当前位置: 代码网 > it编程>软件设计>算法 > 分治法(快速排序、归并排序)

分治法(快速排序、归并排序)

2024年08月06日 算法 我要评论
4.快速排序重在划分,分解:数组A[p..r]被划分为两个子数组A[p. .q-1]和A[q+1,r],使得A[q]为大小居中的数,左侧A[p. .q-1]中的每个元素都小于等于它,而右侧A[q+1,r]中的每个元素都大于等于它。要求时间复杂度为O(n)。3.归并排序重在合并,从中间划分,左边排序(2,4,6,8),右边排序(1,3,5,7),合并(1,2,3,4,5,6,7,8)【算法2】使用快速排序的思想,两个指针,一个从左开始扫描,一个从右开始扫描,左边扫描到偶数停,右边扫描到奇数停,然后进行交换。

基础知识 

1.分治法:divide and conquer ,d&c,将原问题划分为若干个规模较小而结构与原问题一致的子问题;递归地解决这些子问题,然后再合并其结果,得到原问题的解。 

2. 分治算法优点:容易确定运算时间。t(n)=3t(n/2)+f(n)

3.归并排序重在合并,从中间划分,左边排序(2,4,6,8),右边排序(1,3,5,7),合并(1,2,3,4,5,6,7,8)

4.快速排序重在划分,分解:数组a[p..r]被划分为两个子数组a[p. .q-1]和a[q+1,r],使得a[q]为大小居中的数,左侧a[p. .q-1]中的每个元素都小于等于它,而右侧a[q+1,r]中的每个元素都大于等于它。其中计算下标q也是划分过程的一部分。

	quicksort(int[] a,int p,int r) {
		if(p<r) {
			q=partition(a,p,r);
			quicksort(a,p,q-1);
			quicksort(a,q+1,r);
		}
	}

5.快速排序分区算法:

        (1)一遍单向扫描法

         (2)双向扫描法

双向扫描的思路是,头尾指针往中间扫描,从左找到大于主元的元素,从右找到小于等于主元的元素二者交换,继续扫描,直到左侧无大元素,右侧无小元素

         (3)优化(三点中值法)

         (4)绝对中值法

所有数据,五个一组,每一组插入排序并取中间值

 n<=8用插入排序快,列表较短时用插入排序

6.归并排序

归并排序(merge sort)算法完全依照了分治模式:
分解:将n个元素分成各含n/2个元素的子序列;
解决:对两个子序列递归地排序;
合并:合并两个已排序的子序列以得到排序结果
和快排不同的是归并的分解较为随意,重点是合并,开辟辅助空间

 7.调整数组顺序使奇数位于偶数前面

【问题描述】输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分, 所有偶数位于数组的后半部分。要求时间复杂度为o(n)。

【算法1】使用归并排序的思想,开辟辅助空间,从左到右扫描,遇到奇数从左开始放,遇到偶数从右开始放o(n)。

【算法2】使用快速排序的思想,两个指针,一个从左开始扫描,一个从右开始扫描,左边扫描到偶数停,右边扫描到奇数停,然后进行交换。

8.第k个元素

【问题描述】以尽量高的效率求出一个乱序数组中按数值顺序的第k个元素值
【算法】快排分区算法,主元的下标=它在最终序列中的位置(第几个)

【代码】 

 9.超过一半的数字

【问题描述】数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字。

【算法1】排序后返回arr[n/2],nlg(n)

【算法2】顺序排序o(n)

 【算法3】寻找发帖的水王,消除法,遇到不同的数就消除,两两不同的就消除

10.出现次数恰好为一半

【算法】扫描一遍数组就解决问题:
水王占总数的一半,说明总数必为偶数:
假设隔一 个数就是水王的id, 两两不同最后一定会消减为0
水王可能是最后一个元素,每次扫描的时候,多一个动作,和最后一个元素做比较,单独计数,计数恰为一半
如果不是,计数不足一半,那么去掉最后一个元素,水王就是留下的那个candidate

11.最小id可用

在非负数组(乱序)中找到最小的可分配的id (从1开始编号) ,数据量1000000

12.合并有序数组

【问题描述】给定两个排序后的数组a和b ,其中a的未端有足够的缓冲空间容纳b。编写一个方法,将b合并入a并排序

【算法】归并排序,current的下标=p1+p2-1

13.逆序对个数

【问题描述】一个数列,如果左边的数大,右边的数小,则称这两个数为一个逆序对。求出一个数列中有多少个逆序对。

nlg(n)是快排和归并

【算法】merge过程中,只要抓右侧的数,那么就有逆序对数量是左侧队伍的元素个数

【代码】

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com