目录
一、tensorflow + keras + python 版本对照
一、tensorflow + keras + python 版本对照
详情看 tensorflow 官网链接如下:
build from source on windows | tensorflow (google.cn)
framework | python version | description |
---|---|---|
tensorflow 2.9 | 3.7.-3.10. | tensorflow 2.9.0 + keras |
tensorflow 2.8 | 3.7.-3.10. | tensorflow 2.8.0 + keras |
tensorflow 2.7 | 3.7.-3.9. | tensorflow 2.7.0 + keras |
tensorflow 2.6 | 3.6.-3.9. | tensorflow 2.6.0 + keras 2.6.0 |
tensorflow 2.5 | 3.6.-3.9. | tensorflow 2.5.0 + keras 2.5 |
tensorflow 2.4 | 3.6.-3.8. | tensorflow 2.4.0 + keras 2.4.3 |
tensorflow 2.3 | 3.5.-3.8. | tensorflow 2.3.0 + keras 2.4.3 |
tensorflow 2.2 | 3.7. | tensorflow 2.2.0 + keras 2.3.1 |
tensorflow 2.1 | 3.6. | tensorflow 2.1.0 + keras 2.3.1 |
tensorflow 2.0 | 3.6. | tensorflow 2.0.0 + keras 2.3.1 |
tensorflow 1.15 | 3.6. | tensorflow 1.15.0 + keras 2.3.1 |
tensorflow 1.14 | 3.6. | tensorflow 1.14.0 + keras 2.2.5 |
tensorflow 1.13 | 3.6. | tensorflow 1.13.0 + keras 2.2.4 |
tensorflow 1.12 | 3.6. | tensorflow 1.12.0 + keras 2.2.4 |
2. | tensorflow 1.12.0 + keras 2.2.4 | |
tensorflow 1.11 | 3.6. | tensorflow 1.11.0 + keras 2.2.4 |
2. | tensorflow 1.11.0 + keras 2.2.4 | |
tensorflow 1.10 | 3.6. | tensorflow 1.10.0 + keras 2.2.0 |
2. | tensorflow 1.10.0 + keras 2.2.0 | |
tensorflow 1.9 | 3.6. | tensorflow 1.9.0 + keras 2.2.0 |
2. | tensorflow 1.9.0 + keras 2.2.0 | |
tensorflow 1.8 | 3.6. | tensorflow 1.8.0 + keras 2.1.6 |
2. | tensorflow 1.8.0 + keras 2.1.6 | |
tensorflow 1.7 | 3.6. | tensorflow 1.7.0 + keras 2.1.6 |
2. | tensorflow 1.7.0 + keras 2.1.6 | |
tensorflow 1.5 | 3.6. | tensorflow 1.5.0 + keras 2.1.6 |
2. | tensorflow 1.5.0 + keras 2.0.8 | |
tensorflow 1.4 | 3.6. | tensorflow 1.4.0 + keras 2.0.8 |
2. | tensorflow 1.4.0 + keras 2.0.8 | |
tensorflow 1.3 | 3.6. | tensorflow 1.3.0 + keras 2.0.6 |
2. | tensorflow 1.3.0 + keras 2.0.6 |
二、tensorflow 和 keras 安装流程
这里安装 python=3.8,tensorflow=2.4.0,keras=2.4.3(segnet 是我做的语义分割项目的虚拟环境),若需要将创建的虚拟环境添加到 jupyter lab/notebook 中使用,则需要第 3 - 6 步,否则不用:
# 1. anaconda 创建虚拟环境
conda create -n segnet python=3.8
# 2. 激活并进入虚拟环境
activate segnet
# 3. 安装 ipykernel
pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple/
# 4. 安装ipykernel,将虚拟环境加入 jupyter 内核中
python -m ipykernel install --name segnet --display-name segnet
# 5. 检查新虚拟环境是否成功加入内核
jupyter kernelspec list
# 6. 从指定文件夹里进入 jupyter
jupyter lab
# 7. 安装 tensorflow、keras 等软件包
pip install tensorflow==2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install keras==2.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
------------------------------------------------------------------------
pip install matplotlib==3.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install numpy==1.19.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pillow==10.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy==1.7.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
发表评论