当前位置: 代码网 > 科技>人工智能>数据分析 > 【目标检测】Faster R-CNN论文代码复现过程解读(含源代码)

【目标检测】Faster R-CNN论文代码复现过程解读(含源代码)

2024年08月05日 数据分析 我要评论
【目标检测】Faster R-CNN论文代码复现过程解读(含源代码)

目录:faster r-cnn论文代码复现过程解读

faster r-cnn代码使用说明书(分享在github上)

一、代码的地址

https://github.com/biluko/faster-rcnn-pytorch

在这里插入图片描述
在这里插入图片描述

二、我的配置环境

python == 3.10.6
numpy == 1.23.3
opencv == 4.6.0
pillow == 9.2.0
pycocotools == 2.0.6
pytorch == 1.12.1
scipy == 1.9.3
torchvision == 0.13.1
tqdm == 4.64.1
matplotlib == 3.6.2
hdf5 == 1.12.1

三、参数值文件下载

我们需要的权重包括voc_weights_resnet.pth或者voc_weights_vgg.pth以及主干的网络权重我已经上传了百度云,可以自行下载。

首先来看第一个权重文件voc_weights_resnet.pth,是resnet为主干特征提取网络用到的。

第二个权重文件voc_weights_vgg.pth,是vgg为主干特征提取网络用到的。

在这里插入图片描述

顺便训练好的参数我也一并放入了文件夹:

链接:https://pan.baidu.com/s/1iibmiyw8bf132fqgz79q6q 
提取码:dpje

四、voc数据集下载

voc数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:

该数据集为voc07+12的数据集,包括了训练与测试用的数据集。为了训练方便,该数据集中val.txttest.txt相同。

链接:https://pan.baidu.com/s/1stbdrk2mpzfjj-jrzl6iua 
提取码:vh7m

五、模型训练步骤

(1)训练voc07+12数据集

1.数据集的准备

本文使用voc格式进行训练,训练前需要下载好voc07+12的数据集,解压后放在根目录

根目录就是第一级目录下:

会自动填到vocdevkit文件下面。

2.数据集的处理

修改voc_annotation.py里面的annotation_mode = 2,运行voc_annotation.py生成根目录下的2007_train.txt2007_val.txt

源码对应为:

生成的目录为:

3.开始网络训练

train.py的默认参数用于训练voc数据集,直接运行train.py即可开始训练。

这个我起初是在自己的笔记本上运行的,显卡为3060,显存为6g,但是无法运行,显存不够。

我换到了实验室的电脑,ubuntu18.04,双2080ti64g内存,i9处理器,100个batch_size,平均一个花费15分钟左右。

电脑配置不好的同学可以训练不出来,但是没关系,我把训练好的参数也一并上传了,就在第一份百度盘文件中:

4.预测

训练结果预测需要用到两个文件,分别是frcnn.pypredict.py

我们首先需要去frcnn.py里面修改model_path以及classes_path,这两个参数必须要修改。

model_path指向训练好的权值文件,在logs文件夹里。

classes_path指向检测类别所对应的txt。

完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

(2)训练自己的数据集

1.数据集的准备

本文使用voc格式进行训练,训练前需要自己制作好数据集。

训练前将标签文件放在vocdevkit文件夹下的voc2007文件夹下的annotation中。

训练前将图片文件放在vocdevkit文件夹下的voc2007文件夹下的jpegimages中。

2.数据集的处理

在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt2007_val.txt

修改voc_annotation.py里面的参数。

第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。

训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
./faster-rcnn-pytorch-master/model_data/cls_classes.txt文件内容为:

例如我们voc数据的类别为:

aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor

修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py

3.开始网络训练

训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。

classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!

修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。

4.训练结果预测

训练结果预测需要用到两个文件,分别是frcnn.pypredict.py。在frcnn.py里面修改model_path以及classes_path。

model_path指向训练好的权值文件,在logs文件夹里。

classes_path指向检测类别所对应的txt。

完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

六、预测步骤

(1)使用预训练权重

1.下载完库后解压,在百度网盘下载frcnn_weights.pth,放入model_data,运行predict.py,输入:

2.在predict.py里面进行设置可以进行fps测试和video视频检测。

(2)使用自己训练的权重

1.按照训练步骤训练
2.在frcnn.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
class frcnn(object):
    _defaults = {
        #--------------------------------------------------------------------------#
        #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
        #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
        #
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
        #   验证集损失较低不代表map较高,仅代表该权值在验证集上泛化性能较好。
        #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
        #--------------------------------------------------------------------------#
        "model_path"    : './faster-rcnn-pytorch-master/model_data/voc_weights_resnet.pth',
        "classes_path"  : './faster-rcnn-pytorch-master/model_data/voc_classes.txt',
        #---------------------------------------------------------------------#
        #   网络的主干特征提取网络,resnet50或者vgg
        #---------------------------------------------------------------------#
        "backbone"      : "resnet50",
        #---------------------------------------------------------------------#
        #   只有得分大于置信度的预测框会被保留下来
        #---------------------------------------------------------------------#
        "confidence"    : 0.5,
        #---------------------------------------------------------------------#
        #   非极大抑制所用到的nms_iou大小
        #---------------------------------------------------------------------#
        "nms_iou"       : 0.3,
        #---------------------------------------------------------------------#
        #   用于指定先验框的大小
        #---------------------------------------------------------------------#
        'anchors_size'  : [8, 16, 32],
        #-------------------------------#
        #   是否使用cuda
        #   没有gpu可以设置成false
        #-------------------------------#
        "cuda"          : true,
    }

(3)运行predict.py

(4)在predict.py里面进行设置可以进行fps测试和video视频检测

七、评估步骤

(1)评估voc07+12的测试集

1.本文使用voc格式进行评估。

voc07+12已经划分好了测试集,无需利用voc_annotation.py生成imagesets文件夹下的txt。

2.在frcnn.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt
3.运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中

(2)评估自己的数据集

1.本文使用voc格式进行评估。
2.如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percenttrainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1
3.利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
4.在frcnn.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt
5.运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

在这里插入图片描述

在这里插入图片描述

等待一阵子!

八、参考

https://github.com/bubbliiiing/faster-rcnn-pytorch

https://github.com/longcw/faster_rcnn_pytorch

https://github.com/jwyang/faster-rcnn.pytorch
(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com