当前位置: 代码网 > 科技>人工智能>机器学习 > 机器学习 --- 逻辑回归

机器学习 --- 逻辑回归

2024年07月31日 机器学习 我要评论
【代码】机器学习 --- 逻辑回归。

第1关:逻辑回归核心思想

#encoding=utf8
import numpy as np

def sigmoid(t):
    '''
    完成sigmoid函数计算
    :param t: 负无穷到正无穷的实数
    :return: 转换后的概率值
    :可以考虑使用np.exp()函数
    '''
    #********** begin **********#
    return 1.0/(1+np.exp(-t))
    #********** end **********#

第2关:逻辑回归的损失函数

第3关:梯度下降

# -*- coding: utf-8 -*-

import numpy as np
import warnings
warnings.filterwarnings("ignore")

def gradient_descent(initial_theta,eta=0.05,n_iters=1000,epslion=1e-8):
    '''
    梯度下降
    :param initial_theta: 参数初始值,类型为float
    :param eta: 学习率,类型为float
    :param n_iters: 训练轮数,类型为int
    :param epslion: 容忍误差范围,类型为float
    :return: 训练后得到的参数
    '''
    #   请在此添加实现代码   #
    #********** begin *********#
    theta = initial_theta
    i_iter = 0
    while i_iter < n_iters:
        gradient = 2*(theta-3)
        last_theta = theta
        theta = theta - eta*gradient
        if(abs(theta-last_theta)<epslion):
            break
        i_iter +=1
    return theta
    #********** end **********#

第4关:动手实现逻辑回归 - 癌细胞精准识别

# -*- coding: utf-8 -*-

import numpy as np
import warnings
warnings.filterwarnings("ignore")

def sigmoid(x):
    '''
    sigmoid函数
    :param x: 转换前的输入
    :return: 转换后的概率
    '''
    return 1/(1+np.exp(-x))


def fit(x,y,eta=1e-3,n_iters=10000):
    '''
    训练逻辑回归模型
    :param x: 训练集特征数据,类型为ndarray
    :param y: 训练集标签,类型为ndarray
    :param eta: 学习率,类型为float
    :param n_iters: 训练轮数,类型为int
    :return: 模型参数,类型为ndarray
    '''
    #   请在此添加实现代码   #
    #********** begin *********#
    theta = np.zeros(x.shape[1])
    i_iter = 0
    while i_iter < n_iters:
        gradient = (sigmoid(x.dot(theta))-y).dot(x)
        theta = theta -eta*gradient
        i_iter += 1
    return theta
    #********** end **********#

第5关:手写数字识别

from sklearn.linear_model import logisticregression

def digit_predict(train_image, train_label, test_image):
    '''
    实现功能:训练模型并输出预测结果
    :param train_sample: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]
    :param train_label: 包含多条训练样本标签的标签集,类型为ndarray
    :param test_sample: 包含多条测试样本的测试集,类型为ndarry
    :return: test_sample对应的预测标签
    '''

    #************* begin ************#
    # 训练集变形
    flat_train_image = train_image.reshape((-1, 64))
    # 训练集标准化
    train_min = flat_train_image.min()
    train_max = flat_train_image.max()
    flat_train_image = (flat_train_image-train_min)/(train_max-train_min)
    # 测试集变形
    flat_test_image = test_image.reshape((-1, 64))
    # 测试集标准化
    test_min = flat_test_image.min()
    test_max = flat_test_image.max()
    flat_test_image = (flat_test_image - test_min) / (test_max - test_min)

    # 训练--预测
    rf = logisticregression(c=4.0)
    rf.fit(flat_train_image, train_label)
    return rf.predict(flat_test_image)
    #************* end **************#

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com