一、需求背景与方案选型
在电商系统压力测试中,我们发现某些接口响应时间超过2秒,但难以快速定位瓶颈。本文将通过四种方案实现接口耗时统计:
| 方案 | 优点 | 适用场景 |
|---|---|---|
| spring aop | 非侵入式、灵活度高 | 需要详细方法级统计 |
| filter | 简单易用、全局覆盖 | 快速实现入口统计 |
| interceptor | 结合请求上下文 | 需要获取请求参数 |
| micrometer+prometheus | 生产级监控、可视化 | 长期性能监控分析 |
二、aop方案实现(推荐)
2.1 添加依赖
<dependency>
<groupid>org.springframework.boot</groupid>
<artifactid>spring-boot-starter-aop</artifactid>
</dependency>
2.2 耗时统计切面
@aspect
@component
@slf4j
public class apitimeaspect {
// 定义切入点:所有controller的public方法
@pointcut("execution(public * com.example..controller.*.*(..))")
public void apipointcut() {}
@around("apipointcut()")
public object around(proceedingjoinpoint joinpoint) throws throwable {
long starttime = system.currenttimemillis();
object result;
try {
result = joinpoint.proceed();
} finally {
long cost = system.currenttimemillis() - starttime;
recordcost(joinpoint, cost);
}
return result;
}
private void recordcost(proceedingjoinpoint joinpoint, long cost) {
methodsignature signature = (methodsignature) joinpoint.getsignature();
string methodname = signature.getdeclaringtypename() + "." + signature.getname();
log.info("api耗时统计 || 方法: {} || 耗时: {}ms", methodname, cost);
// 可扩展存储到数据库
// monitorservice.saveapicost(methodname, cost);
}
}
2.3 自定义注解实现精准统计
@target(elementtype.method)
@retention(retentionpolicy.runtime)
public @interface timemonitor {
string value() default "";
}
// 在切面中修改切入点表达式
@pointcut("@annotation(com.example.annotation.timemonitor)")
public void annotationpointcut() {}
// 使用示例
@restcontroller
public class ordercontroller {
@timemonitor("创建订单接口")
@postmapping("/orders")
public order createorder() {
// 业务逻辑
}
}
三、filter方案实现(快速接入)
3.1 实现filter
@webfilter(urlpatterns = "/*")
@slf4j
public class timecostfilter implements filter {
@override
public void dofilter(servletrequest request, servletresponse response,
filterchain chain) throws ioexception, servletexception {
long start = system.currenttimemillis();
try {
chain.dofilter(request, response);
} finally {
httpservletrequest req = (httpservletrequest) request;
string uri = req.getrequesturi();
long cost = system.currenttimemillis() - start;
log.info("请求路径: {} || 耗时: {}ms", uri, cost);
}
}
}
3.2 启用filter扫描
@springbootapplication
@servletcomponentscan
public class application {
public static void main(string[] args) {
springapplication.run(application.class, args);
}
}
四、interceptor方案实现(结合请求参数)
4.1 实现interceptor
@component
@slf4j
public class timeinterceptor implements handlerinterceptor {
private static final threadlocal<long> time_holder = new threadlocal<>();
@override
public boolean prehandle(httpservletrequest request,
httpservletresponse response,
object handler) {
time_holder.set(system.currenttimemillis());
return true;
}
@override
public void aftercompletion(httpservletrequest request,
httpservletresponse response,
object handler, exception ex) {
long start = time_holder.get();
long cost = system.currenttimemillis() - start;
time_holder.remove();
string params = getrequestparams(request);
log.info("请求路径: {}?{} || 耗时: {}ms",
request.getrequesturi(), params, cost);
}
private string getrequestparams(httpservletrequest request) {
return request.getparametermap().entryset().stream()
.map(entry -> entry.getkey() + "=" + arrays.tostring(entry.getvalue()))
.collect(collectors.joining("&"));
}
}
4.2 注册interceptor
@configuration
public class webconfig implements webmvcconfigurer {
@autowired
private timeinterceptor timeinterceptor;
@override
public void addinterceptors(interceptorregistry registry) {
registry.addinterceptor(timeinterceptor)
.addpathpatterns("/api/**");
}
}
五、生产级监控方案(prometheus集成)
5.1 添加依赖
<dependency>
<groupid>io.micrometer</groupid>
<artifactid>micrometer-registry-prometheus</artifactid>
</dependency>
5.2 配置监控指标
@configuration
public class metricsconfig {
@bean
public timedaspect timedaspect(meterregistry registry) {
return new timedaspect(registry);
}
}
// 在controller方法上添加注解
@restcontroller
public class productcontroller {
@timed(value = "product.detail.time", description = "商品详情接口耗时")
@getmapping("/products/{id}")
public product getdetail(@pathvariable long id) {
// 业务逻辑
}
}
5.3 prometheus配置示例
scrape_configs:
- job_name: 'spring_app'
metrics_path: '/actuator/prometheus'
static_configs:
- targets: ['localhost:8080']
六、性能优化建议
异步日志写入:避免日志输出阻塞请求线程
@async
public void savecostlog(string method, long cost) {
// 异步存储到数据库
}
采样率控制:高并发场景下按比例采样
if (random.nextdouble() < 0.1) { // 10%采样率
recordcost(joinpoint, cost);
}
异常处理:确保统计逻辑不破坏主流程
try {
recordcost(...);
} catch (exception e) {
log.error("耗时统计异常", e);
}
七、方案对比与选型建议
| 维度 | aop方案 | filter方案 | interceptor方案 | prometheus方案 |
|---|---|---|---|---|
| 实现复杂度 | 中 | 低 | 中 | 高 |
| 数据粒度 | 方法级 | 请求级 | 请求级 | 方法级 |
| 性能影响 | 低(纳秒级) | 低 | 低 | 中 |
| 扩展性 | 高 | 中 | 中 | 高 |
| 生产可维护性 | 高 | 中 | 中 | 极高 |
选型建议:
- 快速验证:filter方案
- 精准统计:aop+自定义注解
- 生产监控:prometheus+micrometer
到此这篇关于springboot优雅统计接口耗时实战中的四种高效方案的文章就介绍到这了,更多相关springboot统计接口耗时内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!
发表评论