springboot整合deepseek技术指南(2025版)

环境准备
<!-- pom.xml 核心依赖 -->
<dependency>
<groupid>com.deepseek</groupid>
<artifactid>deepseek-java-sdk</artifactid>
<version>2.5.0</version>
</dependency>
<dependency>
<groupid>org.springframework.boot</groupid>
<artifactid>spring-boot-starter-webflux</artifactid>
</dependency>配置中心设置
# application.yml
deepseek:
api:
base-url: https://api.deepseek.com/v2
token: ${deepseek_api_key} # 从环境变量读取
timeout: 10000 # 毫秒
retry:
max-attempts: 3
backoff: 2000核心服务类实现
@service
@slf4j
public class deepseekservice {
@value("${deepseek.api.base-url}")
private string baseurl;
@value("${deepseek.api.token}")
private string apitoken;
private final webclient webclient;
public deepseekservice(webclient.builder webclientbuilder) {
this.webclient = webclientbuilder.baseurl(baseurl)
.defaultheader("authorization", "bearer " + apitoken)
.build();
}
/**
* 通用ai请求方法
* @param request 包含prompt和参数的dto对象
* @return 生成的文本内容
*/
public mono<string> generatecontent(deepseekrequest request) {
return webclient.post()
.uri("/generate")
.bodyvalue(request)
.retrieve()
.bodytomono(deepseekresponse.class)
.timeout(duration.ofmillis(10000))
.retrywhen(retry.backoff(3, duration.ofseconds(2)))
.map(response -> {
if (response.getcode() != 200) {
throw new deepseekexception(response.getmsg());
}
return response.getdata().gettext();
});
}
}异常处理增强
@restcontrolleradvice
public class deepseekexceptionhandler {
@exceptionhandler(deepseekexception.class)
public responseentity<errorresult> handledeepseekexception(deepseekexception ex) {
errorresult error = new errorresult("deepseek_error",
"ai服务异常: " + ex.getmessage());
return responseentity.status(502).body(error);
}
@exceptionhandler(webclientresponseexception.class)
public responseentity<errorresult> handlewebclientexception(webclientresponseexception ex) {
errorresult error = new errorresult("network_error",
"接口通信失败: " + ex.getstatuscode());
return responseentity.status(503).body(error);
}
}实际应用场景
场景1:自动生成文章草稿
@postmapping("/generate-article")
public mono<responseentity<string>> generatearticle(@requestbody articlerequest request) {
string prompt = string.format("生成一篇关于%s的技术文章,包含以下要素:%s",
request.gettopic(),
string.join(",", request.getkeywords()));
deepseekrequest deepseekrequest = new deepseekrequest(
prompt,
"technical_writing",
0.7,
1024
);
return deepseekservice.generatecontent(deepseekrequest)
.map(content -> {
string formatted = contentformatter.formatmarkdown(content);
return responseentity.ok(formatted);
});
}场景2:智能内容优化
@postmapping("/optimize-content")
public mono<responseentity<contentoptimization>> optimizecontent(
@requestbody string rawcontent) {
string optimizationprompt = "优化以下内容使其更符合新媒体传播:\n" + rawcontent;
return deepseekservice.generatecontent(
new deepseekrequest(optimizationprompt, "content_optimization", 0.5, 512))
.zipwith(deepseekservice.generatecontent(
new deepseekrequest("生成5个爆款标题", "title_generation", 0.9, 128)))
.map(tuple -> {
contentoptimization result = new contentoptimization();
result.setoptimizedcontent(tuple.gett1());
result.settitles(arrays.aslist(tuple.gett2().split("\n")));
return responseentity.ok(result);
});
}测试方案
@springboottest
class deepseekservicetest {
@autowired
private deepseekservice deepseekservice;
@test
void testtechnicalwriting() {
deepseekrequest request = new deepseekrequest(
"用java解释量子计算基础",
"technical_writing",
0.6,
800
);
stepverifier.create(deepseekservice.generatecontent(request))
.assertnext(content -> {
asserttrue(content.contains("量子比特"));
asserttrue(content.length() > 500);
})
.verifycomplete();
}
}性能优化建议
- 使用
@cacheable对重复请求进行缓存 - 配置hystrix熔断机制(qps超过50时建议启用)
- 批量请求使用deepseek的batch api
- 异步日志记录采用disruptor模式
到此这篇关于springboot整合deepseek技术指南的文章就介绍到这了,更多相关springboot整合deepseek内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!
发表评论