前言
欧式聚类因重复计算导致效率较低,快速欧式聚类有效提高效率。
 参考论文:cao y, wang y, xue y, et al. fec: fast euclidean clustering for point cloud segmentation[j]. drones, 2022, 6(11): 325.
快速欧式聚类
import time
import numpy
import open3d as o3d
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter(action='ignore', category=futurewarning)
class pointindex_numbertag(object):
    def __init__(self):
        self.npointindex = 0.0
        self.nnumbertag = 0.0
    class struct(object):
        def __init__(self, npointindex, nnumbertag):
            self.npointindex = npointindex
            self.nnumbertag = nnumbertag
def main():
    # 通过pcl.load加载pcd文件
    min_component_size = 100
    tolorance = 0.5
    max_n = 50
    start = time.perf_counter()
    cloud = o3d.io.read_point_cloud("../data/street.ply")
    cloud_tree = o3d.geometry.kdtreeflann(cloud)
    point = numpy.asarray(cloud.points)
    size = len(point)
    marked_indices = [0] * size
    if size < min_component_size:
        raise("could not find any cluster")
    else 
             我要评论
我要评论 
                                             
                                             
                                             
                                             
                                             
                                            
发表评论