当前位置: 代码网 > 科技>人工智能>机器学习 > TensorFlow2实战-系列教程3:猫狗识别1

TensorFlow2实战-系列教程3:猫狗识别1

2024年07月28日 机器学习 我要评论
TensorFlow2实战-系列教程3:猫狗识别1

🧡💛💚tensorflow2实战-系列教程 总目录




1、项目介绍

基本流程:

  • 数据预处理:图像数据处理,准备训练和验证数据集
  • 卷积网络模型:构建网络架构
  • 过拟合问题:观察训练和验证效果,针对过拟合问题提出解决方法
  • 数据增强:图像数据增强方法与效果
  • 迁移学习:深度学习必备训练策略

在我们的数据中,有训练和验证,训练集中分别有猫狗两个类别,都有1000张图像,验证集则有500张

2、数据读取

import os
import warnings
warnings.filterwarnings("ignore")
import tensorflow as tf
from tensorflow.keras.optimizers import adam
from tensorflow.keras.preprocessing.image import imagedatagenerator

# 数据所在文件夹
base_dir = './data/cats_and_dogs'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')

# 训练集
train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs')

# 验证集
validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
  1. 导包
  2. 指定数据路径
  3. 训练数据路径
  4. 验证数据路径
  5. 训练数据猫类别路径
  6. 训练数据狗类别路径
  7. 验证数据猫类别路径
  8. 训练数据狗类别路径

3、构建卷积神经网络

model = tf.keras.models.sequential([
    #如果训练慢,可以把数据设置的更小一些
    tf.keras.layers.conv2d(32, (3,3), activation='relu', input_shape=(64, 64, 3)),
    tf.keras.layers.maxpooling2d(2, 2),

    tf.keras.layers.conv2d(64, (3,3), activation='relu'),
    tf.keras.layers.maxpooling2d(2,2),

    tf.keras.layers.conv2d(128, (3,3), activation='relu'),
    tf.keras.layers.maxpooling2d(2,2),
    
    #为全连接层准备
    tf.keras.layers.flatten(),
    
    tf.keras.layers.dense(512, activation='relu'),
    # 二分类sigmoid就够了
    tf.keras.layers.dense(1, activation='sigmoid')
])

3个3x3卷积,穿插3个2x2池化,拉平操作,两个全连接层

model.summary()

打印一下模型架构:

配置训练器:

model.compile(loss='binary_crossentropy', optimizer=adam(lr=1e-4), metrics=['acc'])

4、数据预处理

  • 读进来的数据会被自动转换成tensor(float32)格式,分别准备训练和验证
  • 图像数据归一化(0-1)区间
train_datagen = imagedatagenerator(rescale=1./255)
test_datagen = imagedatagenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        train_dir,  # 文件夹路径
        target_size=(64, 64),  # 指定resize成的大小
        batch_size=20,
        # 如果one-hot就是categorical,二分类用binary就可以
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(64, 64),
        batch_size=20,
        class_mode='binary')

打印结果:
found 2000 images belonging to 2 classes.
found 1000 images belonging to 2 classes.

5、模型训练

  • 直接fit也可以,但是通常咱们不能把所有数据全部放入内存,fit_generator相当于一个生成器,动态产生所需的batch数据
  • steps_per_epoch相当给定一个停止条件,因为生成器会不断产生batch数据,说白了就是它不知道一个epoch里需要执行多少个step
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,  # 2000 images = batch_size * steps
      epochs=20,
      validation_data=validation_generator,
      validation_steps=50,  # 1000 images = batch_size * steps
      verbose=2)

部分打印结果:
epoch 1/20 100/100 - 9s - loss: 0.6909 - acc: 0.5240 - val_loss: 0.6952 - val_acc: 0.5000
epoch 2/20 100/100 - 9s - loss: 0.6645 - acc: 0.5960 - val_loss: 0.6906 - val_acc: 0.5360

epoch 19/20 100/100 - 9s - loss: 0.1750 - acc: 0.9460 - val_loss: 0.6277 - val_acc: 0.7390
epoch 20/20 100/100 - 9s - loss: 0.1593 - acc: 0.9505 - val_loss: 0.5901 - val_acc: 0.7490

6、预测效果展示

import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='training accuracy')
plt.plot(epochs, val_acc, 'b', label='validation accuracy')
plt.title('training and validation accuracy')

plt.figure()

plt.plot(epochs, loss, 'bo', label='training loss')
plt.plot(epochs, val_loss, 'b', label='validation loss')
plt.title('training and validation loss')
plt.legend()

plt.show()

在这里插入图片描述
在这里插入图片描述
将训练损失、准确率和对应的epoch分别画图展示




(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com