当前位置: 代码网 > it编程>编程语言>Java > Java中常见延时队列的实现方案小结(建议收藏)

Java中常见延时队列的实现方案小结(建议收藏)

2024年05月15日 Java 我要评论
一、延时队列的应用什么是延时队列?顾名思义:首先它要具有队列的特性,再给它附加一个延迟消费队列消息的功能,也就是说可以指定队列中的消息在哪个时间点被消费。延时队列在项目中的应用还是比较多的,尤其像电商

一、延时队列的应用

什么是延时队列?顾名思义:首先它要具有队列的特性,再给它附加一个延迟消费队列消息的功能,也就是说可以指定队列中的消息在哪个时间点被消费。

延时队列在项目中的应用还是比较多的,尤其像电商类平台:

1、订单成功后,在30分钟内没有支付,自动取消订单

2、外卖平台发送订餐通知,下单成功后60s给用户推送短信。

3、如果订单一直处于某一个未完结状态时,及时处理关单,并退还库存

4、淘宝新建商户一个月内还没上传商品信息,将冻结商铺等

。。。。

上边的这些场景都可以应用延时队列解决。

二、延时队列的实现

我个人一直秉承的观点:工作上能用jdk自带api实现的功能,就不要轻易自己重复造轮子,或者引入三方中间件。一方面自己封装很容易出问题(大佬除外),再加上调试验证产生许多不必要的工作量;另一方面一旦接入三方的中间件就会让系统复杂度成倍的增加,维护成本也大大的增加。

1、delayqueue 延时队列

jdk 中提供了一组实现延迟队列的api,位于java.util.concurrent包下delayqueue。

delayqueue是一个blockingqueue(无界阻塞)队列,它本质就是封装了一个priorityqueue(优先队列),priorityqueue内部使用完全二叉堆(不知道的自行了解哈)来实现队列元素排序,我们在向delayqueue队列中添加元素时,会给元素一个delay(延迟时间)作为排序条件,队列中最小的元素会优先放在队首。队列中的元素只有到了delay时间才允许从队列中取出。队列中可以放基本数据类型或自定义实体类,在存放基本数据类型时,优先队列中元素默认升序排列,自定义实体类就需要我们根据类属性值比较计算了。

先简单实现一下看看效果,添加三个order入队delayqueue,分别设置订单在当前时间的5秒、10秒、15秒后取消。

要实现delayqueue延时队列,队中元素要implements delayed 接口,这哥接口里只有一个getdelay方法,用于设置延期时间。order类中compareto方法负责对队列中的元素进行排序。

public class order implements delayed {
    /**
     * 延迟时间
     */
    @jsonformat(locale = "zh", timezone = "gmt+8", pattern = "yyyy-mm-dd hh:mm:ss")
    private long time;
    string name;
    public order(string name, long time, timeunit unit) {
        this.name = name;
        this.time = system.currenttimemillis() + (time > 0 ? unit.tomillis(time) : 0);
    }
    @override
    public long getdelay(timeunit unit) {
        return time - system.currenttimemillis();
    }
    @override
    public int compareto(delayed o) {
        order order = (order) o;
        long diff = this.time - order.time;
        if (diff <= 0) {
            return -1;
        } else {
            return 1;
        }
    }
}

delayqueue的put方法是线程安全的,因为put方法内部使用了reentrantlock锁进行线程同步。delayqueue还提供了两种出队的方法 poll() 和 take() , poll() 为非阻塞获取,没有到期的元素直接返回null;take() 阻塞方式获取,没有到期的元素线程将会等待。

public class delayqueuedemo {
    public static void main(string[] args) throws interruptedexception {
        order order1 = new order("order1", 5, timeunit.seconds);
        order order2 = new order("order2", 10, timeunit.seconds);
        order order3 = new order("order3", 15, timeunit.seconds);
        delayqueue<order> delayqueue = new delayqueue<>();
        delayqueue.put(order1);
        delayqueue.put(order2);
        delayqueue.put(order3);
        system.out.println("订单延迟队列开始时间:" + localdatetime.now().format(datetimeformatter.ofpattern("yyyy-mm-dd hh:mm:ss")));
        while (delayqueue.size() != 0) {
            /**
             * 取队列头部元素是否过期
             */
            order task = delayqueue.poll();
            if (task != null) {
                system.out.format("订单:{%s}被取消, 取消时间:{%s}\n", task.name, localdatetime.now().format(datetimeformatter.ofpattern("yyyy-mm-dd hh:mm:ss")));
            }
            thread.sleep(1000);
        }
    }
}

上边只是简单的实现入队与出队的操作,实际开发中会有专门的线程,负责消息的入队与消费。

执行后看到结果如下,order1、order2、order3 分别在 5秒、10秒、15秒后被执行,至此就用delayqueue实现了延时队列。

  • 订单延迟队列开始时间:2020-05-06 14:59:09
  • 订单:{order1}被取消, 取消时间:{2020-05-06 14:59:14}
  • 订单:{order2}被取消, 取消时间:{2020-05-06 14:59:19}
  • 订单:{order3}被取消, 取消时间:{2020-05-06 14:59:24}

2、quartz 定时任务

quartz一款非常经典任务调度框架,在redis、rabbitmq还未广泛应用时,超时未支付取消订单功能都是由定时任务实现的。定时任务它有一定的周期性,可能很多单子已经超时,但还没到达触发执行的时间点,那么就会造成订单处理的不够及时。

引入quartz框架依赖包

<dependency>
     <groupid>org.springframework.boot</groupid>
     <artifactid>spring-boot-starter-quartz</artifactid>
</dependency>

在启动类中使用@enablescheduling注解开启定时任务功能。

@enablescheduling
@springbootapplication
public class delayqueueapplication {
	public static void main(string[] args) {
		springapplication.run(delayqueueapplication.class, args);
	}
}

编写一个定时任务,每个5秒执行一次。

@component
public class quartzdemo {
    //每隔五秒
    @scheduled(cron = "0/5 * * * * ? ")
    public void process(){
        system.out.println("我是定时任务!");
    }
}

3、redis sorted set

redis的数据结构zset,同样可以实现延迟队列的效果,主要利用它的score属性,redis通过score来为集合中的成员进行从小到大的排序。

通过zadd命令向队列delayqueue 中添加元素,并设置score值表示元素过期的时间;向delayqueue 添加三个order1、order2、order3,分别是10秒、20秒、30秒后过期。

 zadd delayqueue 3 order3

消费端轮询队列delayqueue, 将元素排序后取最小时间与当前时间比对,如小于当前时间代表已经过期移除key。

    /**
     * 消费消息
     */
    public void pollorderqueue() {
        while (true) {
            set<tuple> set = jedis.zrangewithscores(delay_queue, 0, 0);
            string value = ((tuple) set.toarray()[0]).getelement();
            int score = (int) ((tuple) set.toarray()[0]).getscore();
            calendar cal = calendar.getinstance();
            int nowsecond = (int) (cal.gettimeinmillis() / 1000);
            if (nowsecond >= score) {
                jedis.zrem(delay_queue, value);
                system.out.println(sdf.format(new date()) + " removed key:" + value);
            }
            if (jedis.zcard(delay_queue) <= 0) {
                system.out.println(sdf.format(new date()) + " zset empty ");
                return;
            }
            thread.sleep(1000);
        }
    }

我们看到执行结果符合预期

2020-05-07 13:24:09 add finished.
2020-05-07 13:24:19 removed key:order1
2020-05-07 13:24:29 removed key:order2
2020-05-07 13:24:39 removed key:order3
2020-05-07 13:24:39 zset empty 

4、redisson延时队列(推荐)

我们上面第三点讲解了如何使用redis sorted set实现延时队列,其实redisson已经帮我们封装好这一块的代码,我们可以直接使用,十分方便

我们可以通过getblockingqueue和getdelayedqueue这两个方法来分别获取堵塞队列和延时队列

其中getblockingqueue需要传入一个key标识参数,而getdelayedqueue需要传入一个堵塞队列参数

    @override
    public <t> rblockingqueue<t> getblockingqueue(string key) {
        return redissonclient.getblockingqueue(key);
    }
    @override
    public <t> rdelayedqueue<t> getdelayedqueue(rblockingqueue<t> rblockingqueue) {
        return redissonclient.getdelayedqueue(rblockingqueue);
    }

 如下,我们可以通过先获取堵塞队列,再获取对应堵塞队列的延时队列,当我们往延时队列中存放元素后,经过指定时间后会被放入堵塞队列中。

// 将库存入库任务存放到延时队列中
    @override
    public void awardstockconsumesendqueue(strategyawardstockkeyvo strategyawardstockkeyvo) {
        string cachekey = constants.rediskey.strategy_award_count_query_key;
        // 获取对应key的堵塞队列
        rblockingqueue<strategyawardstockkeyvo> blockingqueue = redisservice.getblockingqueue(cachekey);
        // 获取对应堵塞队列的延时队列
        rdelayedqueue<strategyawardstockkeyvo> delayedqueue = redisservice.getdelayedqueue(blockingqueue);
        // 将任务对象(你自己定义的对象)放入延时队列中,三秒后会放入堵塞队列
        delayedqueue.offer(strategyawardstockkeyvo, 3, timeunit.seconds);
    }
    // 从堵塞队列中获取任务
    @override
    public strategyawardstockkeyvo takestockqueuevalue() throws interruptedexception {
        string cachekey = constants.rediskey.strategy_award_count_query_key;
        rblockingqueue<strategyawardstockkeyvo> destinationqueue = redisservice.getblockingqueue(cachekey);
        return destinationqueue.poll();
    }

使用定时任务消费堵塞队列的任务

// 库存数据同步任务
    @scheduled(cron = "0/5 * * * * ?")
    public void awardstockupdate() {
        try {
            log.info("定时任务,更新奖品消耗库存【延迟队列获取】");
            strategyawardstockkeyvo strategyawardstockkeyvo = rafflestock.takestockqueuevalue();
            if (null == strategyawardstockkeyvo) return;
            log.info("定时任务,更新奖品消耗库存 strategyid:{} awardid:{}", strategyawardstockkeyvo.getstrategyid(), strategyawardstockkeyvo.getawardid());
            rafflestock.updatestrategyawardstock(strategyawardstockkeyvo.getstrategyid(), strategyawardstockkeyvo.getawardid());
        } catch (exception e) {
            log.error("定时任务,更新奖品消耗库存失败", e);
        }
    }

5、redis 过期回调

redis 的key过期回调事件,也能达到延迟队列的效果,简单来说我们开启监听key是否过期的事件,一旦key过期会触发一个callback事件。

修改redis.conf文件开启notify-keyspace-events ex

notify-keyspace-events ex

redis监听配置,注入bean redismessagelistenercontainer

@configuration
public class redislistenerconfig {
    @bean
    redismessagelistenercontainer container(redisconnectionfactory connectionfactory) {
        redismessagelistenercontainer container = new redismessagelistenercontainer();
        container.setconnectionfactory(connectionfactory);
        return container;
    }
}

编写redis过期回调监听方法,必须继承keyexpirationeventmessagelistener ,有点类似于mq的消息监听。

@component
public class rediskeyexpirationlistener extends keyexpirationeventmessagelistener {
    public rediskeyexpirationlistener(redismessagelistenercontainer listenercontainer) {
        super(listenercontainer);
    }
    @override
    public void onmessage(message message, byte[] pattern) {
        string expiredkey = message.tostring();
        system.out.println("监听到key:" + expiredkey + "已过期");
    }
}

到这代码就编写完成,非常的简单,接下来测试一下效果,在redis-cli客户端添加一个key 并给定3s的过期时间。

 set xiaofu 123 ex 3

在控制台成功监听到了这个过期的key

监听到过期的key为:xiaofu

6、rabbitmq 延时队列(推荐)

利用 rabbitmq 做延时队列是比较常见的一种方式,而实际上rabbitmq 自身并没有直接支持提供延迟队列功能,而是通过 rabbitmq 消息队列的 ttl和 dxl这两个属性间接实现的。

先来认识一下 ttl和 dxl两个概念:

time to live(ttl) :

ttl 顾名思义:指的是消息的存活时间,rabbitmq可以通过x-message-tt参数来设置指定queue(队列)和 message(消息)上消息的存活时间,它的值是一个非负整数,单位为微秒。

rabbitmq 可以从两种维度设置消息过期时间,分别是队列和消息本身

  • 设置队列过期时间,那么队列中所有消息都具有相同的过期时间。
  • 设置消息过期时间,对队列中的某一条消息设置过期时间,每条消息ttl都可以不同。

如果同时设置队列和队列中消息的ttl,则ttl值以两者中较小的值为准。而队列中的消息存在队列中的时间,一旦超过ttl过期时间则成为dead letter(死信)。

dead letter exchanges(dlx):

dlx即死信交换机,绑定在死信交换机上的即死信队列。rabbitmq的 queue(队列)可以配置两个参数x-dead-letter-exchange 和 x-dead-letter-routing-key(可选),一旦队列内出现了dead letter(死信),则按照这两个参数可以将消息重新路由到另一个exchange(交换机),让消息重新被消费。

x-dead-letter-exchange:队列中出现dead letter后将dead letter重新路由转发到指定 exchange(交换机)。

x-dead-letter-routing-key:指定routing-key发送,一般为要指定转发的队列。

队列出现dead letter的情况有:

  • 消息或者队列的ttl过期
  • 队列达到最大长度
  • 消息被消费端拒绝(basic.reject or basic.nack)

下边结合一张图看看如何实现超30分钟未支付关单功能,我们将订单消息a0001发送到延迟队列order.delay.queue,并设置x-message-tt消息存活时间为30分钟,当到达30分钟后订单消息a0001成为了dead letter(死信),延迟队列检测到有死信,通过配置x-dead-letter-exchange,将死信重新转发到能正常消费的关单队列,直接监听关单队列处理关单逻辑即可。

发送消息时指定消息延迟的时间

public void send(string delaytimes) {
        amqptemplate.convertandsend("order.pay.exchange", "order.pay.queue","大家好我是延迟数据", message -> {
            // 设置延迟毫秒值
            message.getmessageproperties().setexpiration(string.valueof(delaytimes));
            return message;
        });
    }
}

设置延迟队列出现死信后的转发规则

/**
     * 延时队列
     */
    @bean(name = "order.delay.queue")
    public queue getmessagequeue() {
        return queuebuilder
                .durable(rabbitconstant.dead_letter_queue)
                // 配置到期后转发的交换
                .withargument("x-dead-letter-exchange", "order.close.exchange")
                // 配置到期后转发的路由键
                .withargument("x-dead-letter-routing-key", "order.close.queue")
                .build();
    }

7、时间轮(netty延时队列)

前边几种延时队列的实现方法相对简单,比较容易理解,时间轮算法就稍微有点抽象了。kafka、netty都有基于时间轮算法实现延时队列,下边主要实践netty的延时队列讲一下时间轮是什么原理。

先来看一张时间轮的原理图,解读一下时间轮的几个基本概念

wheel :时间轮,图中的圆盘可以看作是钟表的刻度。比如一圈round 长度为24秒,刻度数为 8,那么每一个刻度表示 3秒。那么时间精度就是 3秒。时间长度 / 刻度数值越大,精度越大。

当添加一个定时、延时任务a,假如会延迟25秒后才会执行,可时间轮一圈round 的长度才24秒,那么此时会根据时间轮长度和刻度得到一个圈数 round和对应的指针位置 index,也是就任务a会绕一圈指向0格子上,此时时间轮会记录该任务的round和 index信息。当round=0,index=0 ,指针指向0格子 任务a并不会执行,因为 round=0不满足要求。

所以每一个格子代表的是一些时间,比如1秒和25秒 都会指向0格子上,而任务则放在每个格子对应的链表中,这点和hashmap的数据有些类似。

netty构建延时队列主要用hashedwheeltimer,hashedwheeltimer底层数据结构依然是使用delayedqueue,只是采用时间轮的算法来实现。

下面我们用netty 简单实现延时队列,hashedwheeltimer构造函数比较多,解释一下各参数的含义。

threadfactory :表示用于生成工作线程,一般采用线程池;

tickduration和unit:每格的时间间隔,默认100ms;

ticksperwheel:一圈下来有几格,默认512,而如果传入数值的不是2的n次方,则会调整为大于等于该参数的一个2的n次方数值,有利于优化hash值的计算。

public hashedwheeltimer(threadfactory threadfactory, long tickduration, timeunit unit, int ticksperwheel) {
        this(threadfactory, tickduration, unit, ticksperwheel, true);
    }

timertask:一个定时任务的实现接口,其中run方法包装了定时任务的逻辑。

timeout:一个定时任务提交到timer之后返回的句柄,通过这个句柄外部可以取消这个定时任务,并对定时任务的状态进行一些基本的判断。

timer:是hashedwheeltimer实现的父接口,仅定义了如何提交定时任务和如何停止整个定时机制。 

public class nettydelayqueue {
    public static void main(string[] args) {
        final timer timer = new hashedwheeltimer(executors.defaultthreadfactory(), 5, timeunit.seconds, 2);
        //定时任务
        timertask task1 = new timertask() {
            public void run(timeout timeout) throws exception {
                system.out.println("order1  5s 后执行 ");
                timer.newtimeout(this, 5, timeunit.seconds);//结束时候再次注册
            }
        };
        timer.newtimeout(task1, 5, timeunit.seconds);
        timertask task2 = new timertask() {
            public void run(timeout timeout) throws exception {
                system.out.println("order2  10s 后执行");
                timer.newtimeout(this, 10, timeunit.seconds);//结束时候再注册
            }
        };
        timer.newtimeout(task2, 10, timeunit.seconds);
        //延迟任务
        timer.newtimeout(new timertask() {
            public void run(timeout timeout) throws exception {
                system.out.println("order3  15s 后执行一次");
            }
        }, 15, timeunit.seconds);
    }
}

从执行的结果看,order3、order3延时任务只执行了一次,而order2、order1为定时任务,按照不同的周期重复执行。

order1  5s 后执行 
order2  10s 后执行
order3  15s 后执行一次
order1  5s 后执行 
order2  10s 后执行

总结

可能写的有不够完善的地方,如哪里有错误或者不明了的,欢迎大家踊跃指正!!!

到此这篇关于java中常见延时队列的实现方案总结的文章就介绍到这了,更多相关java延时队列内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com