一、数据拆分详解
1. 按条件拆分数据
1.1 单条件拆分
import pandas as pd # 创建示例数据 data = { 'name': ['alice', 'bob', 'charlie', 'david', 'eva', 'frank', 'grace'], 'age': [25, 30, 35, 40, 45, 28, 33], 'department': ['hr', 'it', 'hr', 'finance', 'it', 'marketing', 'hr'], 'salary': [5000, 7000, 5500, 9000, 7500, 6000, 5800] } df = pd.dataframe(data) # 单条件拆分 - 筛选hr部门的员工 hr_employees = df[df['department'] == 'hr'] print("hr部门员工:") print(hr_employees) # 等价写法 hr_employees = df.query('department == "hr"')
1.2 多条件组合拆分
# and条件: 年龄大于30且薪资低于6000 condition = (df['age'] > 30) & (df['salary'] < 6000) filtered_df = df[condition] print("\n年龄>30且薪资<6000的员工:") print(filtered_df) # or条件: hr部门或it部门 condition = (df['department'] == 'hr') | (df['department'] == 'it') dept_filtered = df[condition] print("\nhr或it部门的员工:") print(dept_filtered) # not条件: 非hr部门 non_hr = df[~df['department'].isin(['hr'])] print("\n非hr部门的员工:") print(non_hr)
1.3 使用isin()进行多值筛选
# 筛选特定部门的员工 target_departments = ['hr', 'finance'] dept_filter = df['department'].isin(target_departments) filtered_df = df[dept_filter] print("\nhr和finance部门的员工:") print(filtered_df)
2. 按比例拆分数据
2.1 简单随机拆分
from sklearn.model_selection import train_test_split # 随机拆分: 70%训练集, 30%测试集 train_df, test_df = train_test_split(df, test_size=0.3, random_state=42) print(f"\n训练集 ({len(train_df)}条):") print(train_df) print(f"\n测试集 ({len(test_df)}条):") print(test_df)
2.2 分层抽样拆分
# 按部门分层抽样,保持各部门比例 stratified_split = train_test_split( df, test_size=0.3, random_state=42, stratify=df['department'] ) train_strat, test_strat = stratified_split print("\n分层抽样后的部门分布:") print("训练集部门分布:") print(train_strat['department'].value_counts(normalize=true)) print("\n测试集部门分布:") print(test_strat['department'].value_counts(normalize=true))
2.3 时间序列拆分
# 添加日期列 df['join_date'] = pd.to_datetime(['2020-01-15', '2019-05-20', '2021-03-10', '2018-11-05', '2022-02-28', '2020-07-15', '2019-09-01']) # 按时间点拆分 cutoff_date = pd.to_datetime('2021-01-01') historical = df[df['join_date'] < cutoff_date] recent = df[df['join_date'] >= cutoff_date] print(f"\n历史数据(2021年前加入, {len(historical)}条):") print(historical) print(f"\n近期数据(2021年后加入, {len(recent)}条):") print(recent)
3. 按组拆分数据
3.1 使用groupby拆分
# 按部门分组 department_groups = df.groupby('department') # 查看分组结果 print("\n按部门分组结果:") for name, group in department_groups: print(f"\n{name}部门:") print(group) # 获取特定组 hr_group = department_groups.get_group('hr') print("\nhr部门数据:") print(hr_group)
3.2 拆分为多个dataframe
# 将每个部门的数据保存到单独的dataframe department_dfs = {name: group for name, group in department_groups} # 访问特定部门的数据 print("\nit部门数据:") print(department_dfs['it']) # 或者拆分为列表 department_list = [group for _, group in department_groups]
二、数据合并详解
1. concat方法
1.1 垂直合并(行方向)
# 创建两个相似结构的dataframe df1 = pd.dataframe({ 'name': ['alice', 'bob'], 'age': [25, 30], 'department': ['hr', 'it'] }) df2 = pd.dataframe({ 'name': ['charlie', 'david'], 'age': [35, 40], 'department': ['finance', 'it'] }) # 垂直合并 combined = pd.concat([df1, df2], axis=0) print("\n垂直合并结果:") print(combined) # 重置索引 combined_reset = pd.concat([df1, df2], axis=0, ignore_index=true) print("\n重置索引后的合并结果:") print(combined_reset)
1.2 水平合并(列方向)
# 创建两个不同列的dataframe info_df = pd.dataframe({ 'name': ['alice', 'bob', 'charlie', 'david'], 'employee_id': [101, 102, 103, 104] }) salary_df = pd.dataframe({ 'name': ['alice', 'bob', 'charlie', 'david'], 'salary': [5000, 7000, 5500, 9000], 'bonus': [500, 700, 550, 900] }) # 水平合并 combined_cols = pd.concat([info_df, salary_df.drop('name', axis=1)], axis=1) print("\n水平合并结果:") print(combined_cols)
1.3 处理不同索引
# 设置不同索引 df1_indexed = df1.set_index('name') df2_indexed = df2.set_index('name') # 合并时保留所有索引 combined_index = pd.concat([df1_indexed, df2_indexed], axis=0) print("\n保留所有索引的合并:") print(combined_index)
2. merge方法
2.1 基本合并操作
# 员工信息 employees = pd.dataframe({ 'employee_id': [101, 102, 103, 104, 105], 'name': ['alice', 'bob', 'charlie', 'david', 'eva'], 'dept_id': [1, 2, 1, 3, 2] }) # 部门信息 departments = pd.dataframe({ 'dept_id': [1, 2, 3, 4], 'dept_name': ['hr', 'it', 'finance', 'marketing'], 'location': ['floor1', 'floor2', 'floor3', 'floor4'] }) # 内连接(默认) inner_merge = pd.merge(employees, departments, on='dept_id') print("\n内连接结果:") print(inner_merge) # 左连接 left_merge = pd.merge(employees, departments, on='dept_id', how='left') print("\n左连接结果:") print(left_merge) # 右连接 right_merge = pd.merge(employees, departments, on='dept_id', how='right') print("\n右连接结果:") print(right_merge) # 全外连接 outer_merge = pd.merge(employees, departments, on='dept_id', how='outer') print("\n全外连接结果:") print(outer_merge)
2.2 多键合并
# 添加位置信息 employees['location'] = ['floor1', 'floor2', 'floor1', 'floor3', 'floor2'] # 按部门和位置合并 multi_key_merge = pd.merge( employees, departments, left_on=['dept_id', 'location'], right_on=['dept_id', 'location'], how='left' ) print("\n多键合并结果:") print(multi_key_merge)
2.3 处理重复列名
# 两个表都有'name'列 departments['manager'] = ['alice', 'bob', 'charlie', 'david'] # 合并时处理重复列名 merge_with_suffix = pd.merge( employees, departments, left_on='dept_id', right_on='dept_id', suffixes=('_employee', '_manager') ) print("\n处理重复列名的合并:") print(merge_with_suffix)
3. join方法
3.1 基于索引的合并
# 设置索引 employees_indexed = employees.set_index('employee_id') salary_info = pd.dataframe({ 'employee_id': [101, 102, 103, 104, 105], 'salary': [5000, 7000, 5500, 9000, 7500], 'bonus': [500, 700, 550, 900, 750] }).set_index('employee_id') # 使用join合并 joined_df = employees_indexed.join(salary_info) print("\n基于索引的join合并:") print(joined_df)
3.2 不同join类型
# 创建不完整的数据 partial_salary = salary_info.drop(index=[104, 105]) # 内连接 inner_join = employees_indexed.join(partial_salary, how='inner') print("\n内连接join结果:") print(inner_join) # 左连接 left_join = employees_indexed.join(partial_salary, how='left') print("\n左连接join结果:") print(left_join)
三、高级合并技巧
1. 合并时的冲突处理
# 创建有冲突的数据 df_conflict1 = pd.dataframe({ 'id': [1, 2, 3], 'value': ['a', 'b', 'c'] }) df_conflict2 = pd.dataframe({ 'id': [2, 3, 4], 'value': ['x', 'y', 'z'] }) # 合并时处理冲突 merged_conflict = pd.merge( df_conflict1, df_conflict2, on='id', how='outer', suffixes=('_left', '_right') ) # 解决冲突 - 优先使用右边的值 merged_conflict['value'] = merged_conflict['value_right'].fillna(merged_conflict['value_left']) merged_conflict = merged_conflict.drop(['value_left', 'value_right'], axis=1) print("\n冲突处理后的合并结果:") print(merged_conflict)
2. 合并时的复杂条件
# 创建需要复杂条件合并的数据 orders = pd.dataframe({ 'order_id': [1, 2, 3, 4, 5], 'customer_id': [101, 102, 101, 103, 104], 'order_date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']), 'amount': [100, 200, 150, 300, 250] }) customers = pd.dataframe({ 'customer_id': [101, 102, 103, 105], 'join_date': pd.to_datetime(['2022-01-01', '2022-05-15', '2022-11-20', '2023-01-01']), 'tier': ['gold', 'silver', 'silver', 'bronze'] }) # 合并后筛选: 只保留下单日期晚于加入日期的记录 merged_complex = pd.merge( orders, customers, on='customer_id', how='left' ) merged_complex = merged_complex[merged_complex['order_date'] >= merged_complex['join_date']] print("\n复杂条件合并结果:") print(merged_complex)
3. 大型数据集的合并优化
import numpy as np # 创建大型数据集 large_df1 = pd.dataframe({ 'id': range(1, 100001), 'value1': np.random.rand(100000) }) large_df2 = pd.dataframe({ 'id': range(50000, 150001), 'value2': np.random.rand(100000) }) # 优化合并方法1: 指定合并键的数据类型 large_df1['id'] = large_df1['id'].astype('int32') large_df2['id'] = large_df2['id'].astype('int32') # 优化合并方法2: 使用更高效的合并方式 %timeit pd.merge(large_df1, large_df2, on='id') # 测量执行时间 # 优化合并方法3: 先筛选再合并 filtered_df2 = large_df2[large_df2['id'] <= 100000] %timeit pd.merge(large_df1, filtered_df2, on='id')
四、实际应用案例
1. 电商数据分析
# 创建电商数据集 orders = pd.dataframe({ 'order_id': [1001, 1002, 1003, 1004, 1005], 'customer_id': [201, 202, 203, 204, 205], 'order_date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03', '2023-01-04']), 'amount': [150.0, 200.0, 75.5, 300.0, 125.0] }) customers = pd.dataframe({ 'customer_id': [201, 202, 203, 204, 206], 'name': ['alice', 'bob', 'charlie', 'david', 'eva'], 'join_date': pd.to_datetime(['2022-01-15', '2022-03-20', '2022-05-10', '2022-07-05', '2022-09-01']), 'tier': ['gold', 'silver', 'silver', 'bronze', 'gold'] }) products = pd.dataframe({ 'order_id': [1001, 1001, 1002, 1003, 1004, 1004, 1005], 'product_id': [1, 2, 1, 3, 2, 3, 1], 'quantity': [1, 2, 1, 1, 3, 1, 2], 'price': [50.0, 50.0, 200.0, 75.5, 100.0, 100.0, 62.5] }) # 合并订单和客户信息 order_customer = pd.merge(orders, customers, on='customer_id', how='left') # 合并订单详情 full_data = pd.merge(order_customer, products, on='order_id', how='left') # 计算扩展金额 full_data['extended_price'] = full_data['quantity'] * full_data['price'] # 按客户分析 customer_analysis = full_data.groupby(['customer_id', 'name', 'tier']).agg( total_orders=('order_id', 'nunique'), total_amount=('amount', 'sum'), total_items=('quantity', 'sum') ).reset_index() print("\n完整的电商合并数据:") print(full_data) print("\n客户分析:") print(customer_analysis)
2. 学生成绩分析
# 创建学生数据集 students = pd.dataframe({ 'student_id': [1, 2, 3, 4, 5], 'name': ['alice', 'bob', 'charlie', 'david', 'eva'], 'class': ['a', 'b', 'a', 'b', 'a'] }) grades_math = pd.dataframe({ 'student_id': [1, 2, 3, 4, 6], 'math_score': [90, 85, 78, 92, 88], 'math_rank': [1, 2, 3, 1, 2] }) grades_english = pd.dataframe({ 'student_id': [1, 3, 4, 5, 7], 'english_score': [88, 76, 95, 82, 90], 'english_rank': [2, 3, 1, 4, 1] }) # 合并所有成绩 all_grades = pd.merge( pd.merge(students, grades_math, on='student_id', how='left'), grades_english, on='student_id', how='left' ) # 计算平均分和排名 all_grades['average_score'] = all_grades[['math_score', 'english_score']].mean(axis=1) all_grades['average_rank'] = all_grades[['math_rank', 'english_rank']].mean(axis=1) # 按班级分析 class_analysis = all_grades.groupby('class').agg( avg_math=('math_score', 'mean'), avg_english=('english_score', 'mean'), top_math=('math_score', 'max'), top_english=('english_score', 'max') ).reset_index() print("\n完整的学生成绩数据:") print(all_grades) print("\n班级分析:") print(class_analysis)
五、最佳实践和常见问题
1. 合并前的准备工作
# 1. 检查键的唯一性 print("\n客户id在customers表中的唯一性:", customers['customer_id'].is_unique) print("订单id在orders表中的唯一性:", orders['order_id'].is_unique) # 2. 检查缺失值 print("\ncustomers表中customer_id的缺失值:", customers['customer_id'].isnull().sum()) print("orders表中customer_id的缺失值:", orders['customer_id'].isnull().sum()) # 3. 检查数据类型 print("\ncustomers表中customer_id的类型:", customers['customer_id'].dtype) print("orders表中customer_id的类型:", orders['customer_id'].dtype) # 4. 预处理 - 填充缺失值或转换类型 orders['customer_id'] = orders['customer_id'].fillna(0).astype(int) customers['customer_id'] = customers['customer_id'].astype(int)
2. 合并后的验证
# 合并数据 merged_data = pd.merge(orders, customers, on='customer_id', how='left') # 1. 检查合并后的行数 print("\n合并后的行数:", len(merged_data)) print("左表行数:", len(orders)) print("右表行数:", len(customers)) # 2. 检查匹配情况 print("\n成功匹配的记录数:", len(merged_data[~merged_data['name'].isnull()])) print("未匹配的记录数:", len(merged_data[merged_data['name'].isnull()])) # 3. 检查重复列 print("\n合并后的列名:", merged_data.columns.tolist()) # 4. 抽样检查 print("\n合并数据抽样检查:") print(merged_data.sample(3, random_state=42))
3. 性能优化技巧
# 1. 指定合并键的数据类型 orders['customer_id'] = orders['customer_id'].astype('int32') customers['customer_id'] = customers['customer_id'].astype('int32') # 2. 减少合并前的数据量 # 只选择需要的列 customers_filtered = customers[['customer_id', 'name', 'tier']] # 3. 使用更高效的合并方法 # 对于大型数据集,可以考虑使用dask或pyspark # 4. 分块合并 def chunk_merge(left, right, on, chunksize=10000, how='left'): chunks = [] for i in range(0, len(left), chunksize): chunk = pd.merge( left.iloc[i:i+chunksize], right, on=on, how=how ) chunks.append(chunk) return pd.concat(chunks, axis=0) # 5. 使用索引加速 orders_indexed = orders.set_index('customer_id') customers_indexed = customers.set_index('customer_id') %timeit orders_indexed.join(customers_indexed, how='left')
4. 常见问题及解决方案
问题1: 合并后行数异常增多
- 原因: 合并键在其中一个表中不唯一
- 解决: 检查键的唯一性
df.duplicated().sum()
问题2: 合并后出现大量nan值
- 原因: 键不匹配或使用了外连接
- 解决: 检查键的匹配情况或使用内连接
问题3: 合并速度非常慢
- 原因: 数据集太大或键的数据类型不一致
- 解决: 优化数据类型,分块处理,或使用更高效的工具
问题4: 列名冲突
- 原因: 两个表有相同列名但非合并键
- 解决: 使用suffixes参数或提前重命名列
问题5: 内存不足
- 原因: 数据集太大
- 解决: 使用分块处理,或者考虑使用dask等工具
以上就是python进行数据拆分和合并的超详细指南的详细内容,更多关于python数据拆分和合并的资料请关注代码网其它相关文章!
发表评论