引言
opencv是一个开源的计算机视觉库,广泛应用于图像处理和计算机视觉领域。python通过cv2模块提供了对opencv的绑定,使得开发者可以方便地使用python进行图像处理和计算机视觉任务。本文将详细介绍python中opencv绑定库的使用方法,并提供丰富的示例代码。
一、安装opencv
首先需要安装opencv库:
pip install opencv-python
如果需要额外的功能(如sift、surf等专利算法),可以安装:
pip install opencv-contrib-python
二、基本图像操作
1. 读取和显示图像
import cv2 # 读取图像 img = cv2.imread('image.jpg') # 默认bgr格式 # 显示图像 cv2.imshow('image', img) # 等待按键并关闭窗口 cv2.waitkey(0) cv2.destroyallwindows()
2. 保存图像
cv2.imwrite('output.jpg', img) # 保存为jpeg格式
3. 获取图像信息
print(f"图像形状: {img.shape}") # (高度, 宽度, 通道数) print(f"图像大小: {img.size} 字节") print(f"图像数据类型: {img.dtype}") # 通常是uint8
三、图像基本处理
1. 颜色空间转换
# bgr转灰度 gray = cv2.cvtcolor(img, cv2.color_bgr2gray) # bgr转rgb rgb = cv2.cvtcolor(img, cv2.color_bgr2rgb) # 显示结果 cv2.imshow('gray', gray) cv2.imshow('rgb', rgb) cv2.waitkey(0)
2. 图像缩放
# 缩放到指定尺寸 resized = cv2.resize(img, (300, 200)) # (宽度, 高度) # 按比例缩放 scale_percent = 50 # 缩放到50% width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) resized = cv2.resize(img, (width, height)) cv2.imshow('resized', resized) cv2.waitkey(0)
3. 图像裁剪
# 裁剪图像 (y1:y2, x1:x2) cropped = img[100:400, 200:500] cv2.imshow('cropped', cropped) cv2.waitkey(0)
4. 图像旋转
# 获取图像中心 (h, w) = img.shape[:2] center = (w // 2, h // 2) # 旋转矩阵 m = cv2.getrotationmatrix2d(center, 45, 1.0) # 旋转45度,缩放1.0 # 应用旋转 rotated = cv2.warpaffine(img, m, (w, h)) cv2.imshow('rotated', rotated) cv2.waitkey(0)
四、图像滤波
1. 均值模糊
blurred = cv2.blur(img, (5, 5)) # 5x5核大小 cv2.imshow('blurred', blurred) cv2.waitkey(0)
2. 高斯模糊
gaussian = cv2.gaussianblur(img, (5, 5), 0) # 核大小5x5,标准差0 cv2.imshow('gaussian', gaussian) cv2.waitkey(0)
3. 中值模糊
median = cv2.medianblur(img, 5) # 核大小5 cv2.imshow('median', median) cv2.waitkey(0)
4. 双边滤波
bilateral = cv2.bilateralfilter(img, 9, 75, 75) # 核大小9,颜色和空间sigma cv2.imshow('bilateral', bilateral) cv2.waitkey(0)
五、边缘检测
1. canny边缘检测
gray = cv2.cvtcolor(img, cv2.color_bgr2gray) edges = cv2.canny(gray, 100, 200) # 阈值100和200 cv2.imshow('edges', edges) cv2.waitkey(0)
2. sobel算子
grad_x = cv2.sobel(gray, cv2.cv_64f, 1, 0, ksize=3) # x方向 grad_y = cv2.sobel(gray, cv2.cv_64f, 0, 1, ksize=3) # y方向 # 合并梯度 abs_grad_x = cv2.convertscaleabs(grad_x) abs_grad_y = cv2.convertscaleabs(grad_y) grad = cv2.addweighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0) cv2.imshow('sobel', grad) cv2.waitkey(0)
六、形态学操作
1. 膨胀和腐蚀
# 二值化图像 _, binary = cv2.threshold(gray, 127, 255, cv2.thresh_binary) # 定义核 kernel = cv2.getstructuringelement(cv2.morph_rect, (5, 5)) # 膨胀 dilated = cv2.dilate(binary, kernel, iterations=1) # 腐蚀 eroded = cv2.erode(binary, kernel, iterations=1) cv2.imshow('dilated', dilated) cv2.imshow('eroded', eroded) cv2.waitkey(0)
2. 开运算和闭运算
# 开运算(先腐蚀后膨胀) opening = cv2.morphologyex(binary, cv2.morph_open, kernel) # 闭运算(先膨胀后腐蚀) closing = cv2.morphologyex(binary, cv2.morph_close, kernel) cv2.imshow('opening', opening) cv2.imshow('closing', closing) cv2.waitkey(0)
七、特征检测与匹配
1. harris角点检测
gray = cv2.cvtcolor(img, cv2.color_bgr2gray) # harris角点检测 corners = cv2.cornerharris(gray, 2, 3, 0.04) # 结果可视化 img_corners = img.copy() img_corners[corners > 0.01 * corners.max()] = [0, 0, 255] cv2.imshow('harris corners', img_corners) cv2.waitkey(0)
2. sift特征检测
# 确保安装了opencv-contrib-python sift = cv2.sift_create() # 检测关键点和描述符 keypoints, descriptors = sift.detectandcompute(gray, none) # 绘制关键点 img_sift = cv2.drawkeypoints(img, keypoints, none, color=(0, 255, 0)) cv2.imshow('sift keypoints', img_sift) cv2.waitkey(0)
3. 特征匹配
# 读取第二张图像 img2 = cv2.imread('image2.jpg') gray2 = cv2.cvtcolor(img2, cv2.color_bgr2gray) # 检测关键点和描述符 keypoints2, descriptors2 = sift.detectandcompute(gray2, none) # 使用flann匹配器 flann_index_kdtree = 1 index_params = dict(algorithm=flann_index_kdtree, trees=5) search_params = dict(checks=50) flann = cv2.flannbasedmatcher(index_params, search_params) matches = flann.knnmatch(descriptors, descriptors2, k=2) # 应用比率测试 good = [] for m, n in matches: if m.distance < 0.7 * n.distance: good.append(m) # 绘制匹配结果 img_matches = cv2.drawmatches(img, keypoints, img2, keypoints2, good, none, flags=cv2.drawmatchesflags_not_draw_single_points) cv2.imshow('feature matches', img_matches) cv2.waitkey(0)
八、视频处理
1. 读取和显示视频
cap = cv2.videocapture('video.mp4') # 或使用0读取摄像头 while cap.isopened(): ret, frame = cap.read() if not ret: break cv2.imshow('video', frame) if cv2.waitkey(25) & 0xff == ord('q'): break cap.release() cv2.destroyallwindows()
2. 视频写入
cap = cv2.videocapture(0) # 读取摄像头 fourcc = cv2.videowriter_fourcc(*'xvid') out = cv2.videowriter('output.avi', fourcc, 20.0, (640, 480)) while cap.isopened(): ret, frame = cap.read() if not ret: break # 处理帧(例如转换为灰度) gray = cv2.cvtcolor(frame, cv2.color_bgr2gray) out.write(cv2.cvtcolor(gray, cv2.color_gray2bgr)) # 需要转换回bgr cv2.imshow('video', frame) if cv2.waitkey(1) & 0xff == ord('q'): break cap.release() out.release() cv2.destroyallwindows()
九、图像分割
1. 阈值分割
gray = cv2.cvtcolor(img, cv2.color_bgr2gray) # 固定阈值 _, thresh = cv2.threshold(gray, 127, 255, cv2.thresh_binary) # 自适应阈值 thresh_adapt = cv2.adaptivethreshold(gray, 255, cv2.adaptive_thresh_gaussian_c, cv2.thresh_binary, 11, 2) cv2.imshow('threshold', thresh) cv2.imshow('adaptive threshold', thresh_adapt) cv2.waitkey(0)
2. 轮廓检测
# 二值化图像 _, binary = cv2.threshold(gray, 127, 255, cv2.thresh_binary) # 查找轮廓 contours, _ = cv2.findcontours(binary, cv2.retr_tree, cv2.chain_approx_simple) # 绘制轮廓 img_contours = img.copy() cv2.drawcontours(img_contours, contours, -1, (0, 255, 0), 2) cv2.imshow('contours', img_contours) cv2.waitkey(0)
十、高级示例:人脸检测
# 加载预训练的人脸检测模型 face_cascade = cv2.cascadeclassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # 读取图像 img = cv2.imread('face.jpg') gray = cv2.cvtcolor(img, cv2.color_bgr2gray) # 检测人脸 faces = face_cascade.detectmultiscale(gray, scalefactor=1.1, minneighbors=5, minsize=(30, 30)) # 绘制矩形框 for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2) cv2.imshow('face detection', img) cv2.waitkey(0)
十一、性能优化技巧
使用numpy操作替代循环:
# 不推荐 for i in range(rows): for j in range(cols): img[i,j] = [255, 255, 255] if some_condition else [0, 0, 0] # 推荐 condition = some_condition_array img = np.where(condition[..., none], [255, 255, 255], [0, 0, 0])
使用inrange进行颜色分割:
# 创建掩膜 lower = np.array([0, 100, 100]) upper = np.array([10, 255, 255]) mask = cv2.inrange(hsv_img, lower, upper)
使用积分图像加速计算:
# 计算积分图像 integral = cv2.integral(gray) # 快速计算矩形区域和 sum_rect = integral[x2,y2] - integral[x1-1,y2] - integral[x2,y1-1] + integral[x1-1,y1-1]
以上就是python中opencv绑定库的使用方法详解的详细内容,更多关于python opencv绑定库使用的资料请关注代码网其它相关文章!
发表评论