前言
项目一直在用流,但是用的也是一知半解,所以在这里深入学习一下
通常用到流会设计到java8的几个新知识,下边我回粗略的讲解下这几个知识,再了解认知后学习stream或者用到的时候更得心应手
- lambda表达式
- 方法引用
- option
- stream
1. lambda
建议先了解函数式接口
1.1 语法
parameter -> expression body;
1.2 没参数只有一条语句或者多条语句
()->system.out.prilt("baicaizhi"); ()->{ system.out.prilt("baicaizhi1"); system.out.prilt("baicaizhi1"); }
1.3 一个参数只有一条语句或者多条语句
a->system.out.println(a); a->{ system.out.println(a); system.out.println(a); }
1.4 多个参数只有一条语句或者多条语句
(a,b)->a+b; (a,b)->{ int c = a+b; system.out.println(c); }
- 可选的参数类型声明 : 无需声明参数的类型。编译器可以从参数的值推断出相同的值。
- 可选的参数周围的小括号 () : 如果只有一个参数,可以忽略参数周围的小括号。但如果有多个参数,则必须添加小括号。
- 可选的大括号 {} : 如果 lambda 表达式只包含一条语句,那么可以省略大括号。但如果有多条语句,则必须添加大括号。
- 可选的 return 关键字 : 如果 lambda 表达式只有一条语句,那么编译器会自动 return 该语句最后的结果。但如果显式使用了 return 语句,则必须添加大括号 {} ,哪怕只有一条语句。
2.方法引用
使用:(静态方法或者new的时候用)
test::new test::getname
3.option
接口名称 | 简要作用描述 |
---|---|
optional empty() | 构建一个空的optional 对象 |
optional of(t value) | 构建一个非空的optional 对象,如果为空则报错! |
optional ofnullable(t value) | 构建一个optional 对象,允许为空! |
t get() | 获取一个泛型的对象值,如果值为空,则报错 |
boolean ispresent() | 判空,如果不为null 则为 true |
boolean isempty() | 判空,如果为null 则为 true |
ifpresent(consumer) | 传递一个接口函数对,当数据不为空的时候执行这个函数 |
ifpresentorelse(consumer, runnable) | 两个参数, 第一个是不为空的时候执行的,第二个是为空的时候执行的。都是接口函数。 |
optional filter | 对对象的一个过滤 |
optional map(function) | 转换方法 |
optional flatmap(function) | 转换方法,常用与多层转换一层 |
optional or(supplier) | 当得到对象为空的时候根据接口函数创建一个新的optional对象 |
t orelse(t) | 当得到对象为空的时候获取一个指定泛型对象 |
t orelsethrow() | 不为空 返回对象,为空 则nosuchelementexception |
t orelsethrow(supplier) | 不为空 返回对象,为空 则指定异常 |
4.stream
4.1stream概述
4.1.1什么是steam
stream将要处理的元素集合看作一种流,在流的过程中,借助stream api对流中的元素进行操作,比如:筛选、排序、聚合等。
4.1.2stream可以由数组和集合创建,对流的操作分为俩类
4.1.2.1中间操作
每次返回一个新的流,可以有多个。
4.1.2.2终端操作
终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值
4.1.3特性
1.stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
2.stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
3.stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。
3.2stream的创建
3.2.1通过 java.util.collection.stream() 方法用集合创建流
list<string> list = arrays.aslist("a","b","c"); //创建顺序流 stream<string> stream = list.stream(); //创建并发流 stream<string> stringstream = list.parallelstream();
3.2.2使用java.util.arrays.stream(t[] array)方法用数组创建流
//数组创建流 int[] array = {1,2,3}; intstream stream1 = arrays.stream(array);
3.2.3使用stream的静态方法:of()、iterate()、generate()
//stream静态方法创建流 stream<integer> integerstream = stream.of(1, 2); stream<integer> iterate = stream.iterate(0, x -> x = 3); stream<double> limit = stream.generate(math::random).limit(3);
3.2.4顺序流转换成并发流
//顺序流转换成并发流 optional<string> first = list.stream().parallel().filter(x -> x > 6).findfirst();
4.3 使用
使用前先了解optional
4.3.1 数据准备
class person { private string name; // 姓名 private int salary; // 薪资 private int age; // 年龄 private string sex; //性别 private string area; // 地区 // 构造方法 public person(string name, int salary, int age,string sex,string area) { this.name = name; this.salary = salary; this.age = age; this.sex = sex; this.area = area; } // 省略了get和set,请自行添加 }
4.3.2 使用
4.3.2.1 遍历/匹配(foreach/find/match)
stream也是支持类似集合的遍历和匹配元素的,只是stream中的元素是以optional类型存在的。stream的遍历、匹配非常简单
list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); // 遍历输出符合条件的元素 list.stream().filter(x->x>6).foreach(system.out::println); // 匹配第一个 optional<integer> first = list.stream().filter(x -> x > 6).findfirst(); // 匹配任意(适用于并行流) optional<integer> any = list.parallelstream().filter(x -> x > 6).findany(); // 是否包含符合特定条件的元素 boolean b = list.stream().anymatch(x -> x < 6); system.out.println("匹配第一个值"+first.get()); system.out.println("匹配任意值"+any.get()); system.out.println("是否存在大于6的值"+b);
4.3.2.2 筛选(filter)
筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作
4.3.2.3 聚合(max/min/count)
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); //筛选出integer集合中大于7的元素,并打印出来 list.stream().filter(x->x>7).foreach(system.out::println); //筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集) list<string> collect = personlist.stream().filter(value -> value.getsalary() > 8000).map(person::getname).collect(collectors.tolist()); system.out.println("工资高于8000"+collect);
4.3.2.4 映射(map/flatmap)
映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatmap:
- map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
- flatmap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); //英文字符串数组的元素全部改为大写。整数数组每个元素+3 list<integer> collect = list.stream().map(x -> x + 3).collect(collectors.tolist()); list<string> collect1 = strlist.stream().map(string::touppercase).collect(collectors.tolist()); //将员工的薪资全部增加1000 //不改变源集合的方式 list<person> collect2 = personlist.stream().map(person -> { person person1 = new person(person.getname(), 0, person.getage(), person.getsex(), person.getarea()); person1.setsalary(person.getsalary() + 1000); return person1; }).collect(collectors.tolist()); //改变源集合的方式 list<person> collect3 = personlist.stream().map(person -> { person.setsalary(person.getsalary() + 1000); return person; }).collect(collectors.tolist()); //将两个字符数组合并成一个新的字符数组 list<string> collect4 = strlist.stream().flatmap(s -> { string[] s2 = s.split(","); return arrays.stream(s2); }).collect(collectors.tolist()); system.out.println("每个元素大写:" + collect1); system.out.println("每个元素+3:" + collect); //注意,执行的时候分开执行,否则看不出来效果 system.out.println("一次改动前:" + personlist.get(0).getname() + "-->" + personlist.get(0).getsalary()); system.out.println("一次改动后:" + collect2.get(0).getname() + "-->" + collect2.get(0).getsalary()); system.out.println("二次改动前:" + personlist.get(0).getname() + "-->" + personlist.get(0).getsalary()); system.out.println("二次改动后:" + collect3.get(0).getname() + "-->" + collect3.get(0).getsalary()); system.out.println("处理前的集合:" + strlist); system.out.println("处理后的集合:" + collect4);
4.3.2.5 归约(reduce)
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); // 求integer集合的元素之和、乘积和最大值 // 求和方式1 optional<integer> reduce = list.stream().reduce((x, y) -> x + y); // 求和方式2 optional<integer> reduce1 = list.stream().reduce(integer::sum); // 求和方式3 integer reduce2 = list.stream().reduce(0, integer::sum); // 求乘积 optional<integer> reduce3 = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 optional<integer> reduce4 = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 integer reduce5 = list.stream().reduce(1, integer::max); // 求所有员工的工资之和和最高工资 // 求和方式1 optional<integer> reduce7 = personlist.stream().map(person::getsalary).reduce(integer::sum); // 求和方式2 integer reduce6 = personlist.stream().reduce(0, (sum, p) -> sum += p.getsalary(),(sum1,sum2)->sum1+sum2); // 求和方式3 integer reduce8 = personlist.stream().reduce(0, (sum, p) -> sum += p.getsalary(), integer::sum); // 求最高工资方式1: integer reduce9 = personlist.stream().reduce(0, (max, p) -> max > p.getsalary() ? max : p.getsalary(),integer::max); // 求最高工资方式2: integer reduce10 = personlist.stream().reduce(0, (max, p) -> max > p.getsalary() ? max : p.getsalary(), (max1, max2) -> max1 > max2 ? max1 : max2); system.out.println("list求和:" + reduce.get() + "," + reduce1.get() + "," + reduce2); system.out.println("list求积:" + reduce3.get()); system.out.println("list求最大值:" + reduce4.get() + "," + reduce5); system.out.println("工资之和:" + reduce7.get() + "," + reduce6 + "," + reduce8); system.out.println("最高工资:" + reduce9 + "," + reduce10);
4.3.2.6 收集(collect)
解释
- collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合
- collect主要依赖java.util.stream.collectors类内置的静态方法
4.3.2.6.1 归集(tolist/toset/tomap)
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。tolist、toset和tomap比较常用,另外还有tocollection、toconcurrentmap等复杂一些的用法
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); list<integer> collect = list.stream().filter(x -> x % 2 == 0).collect(collectors.tolist()); set<integer> collect1 = list.stream().filter(x -> x % 2 == 0).collect(collectors.toset()); map<string, person> collect2 = personlist.stream().filter(p -> p.getsalary() > 8000).collect(collectors.tomap(person::getname, p -> p)); system.out.println("tolist:" + collect); system.out.println("toset:" + collect1); system.out.println("tomap:" + collect2);
4.3.2.6.2 统计(count/averaging)
collectors提供了一系列用于数据统计的静态方法
- 计数:count
- 平均值:averagingint、averaginglong、averagingdouble
- 最值:maxby、minby
- 求和:summingint、summinglong、summingdouble
- 统计以上所有:summarizingint、summarizinglong、summarizingdouble
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); // 统计员工人数、平均工资、工资总额、最高工资 // 求总数 long collect = personlist.stream().collect(collectors.counting()); // 求平均工资 double collect1 = personlist.stream().collect(collectors.averagingdouble(person::getsalary)); // 求最高工资 optional<integer> collect2 = personlist.stream().map(person::getsalary).collect(collectors.maxby(integer::compare)); // 求工资之和 integer collect3 = personlist.stream().collect(collectors.summingint(person::getsalary)); // 一次性统计所有信息 doublesummarystatistics collect4 = personlist.stream().collect(collectors.summarizingdouble(person::getsalary)); system.out.println("员工总数:" + collect); system.out.println("员工平均工资:" + collect1); system.out.println("员工工资总和:" + collect2.get()); system.out.println("员工工资所有统计:" + collect3);
4.3.2.6.3 分组(partitioningby/groupingby)
解释
- 分区:将stream按条件分为两个map,比如员工按薪资是否高于8000分为两部分。
- 分组:将集合分为多个map,比如员工按性别分组。有单级分组和多级分组。
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); //将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组 // 将员工按薪资是否高于8000分组 map<boolean, list<person>> collect = personlist.stream().collect(collectors.partitioningby(person -> person.getsalary() > 8000)); // 将员工按性别分组 map<string, list<person>> collect1 = personlist.stream().collect(collectors.groupingby(person::getsex)); // 将员工先按性别分组,再按地区分组 map<string, map<string, list<person>>> collect2 = personlist.stream().collect(collectors.groupingby(person::getsex, collectors.groupingby(person::getarea))); system.out.println("员工按薪资是否大于8000分组情况:" + collect); system.out.println("员工按性别分组情况:" + collect1); system.out.println("员工按性别、地区:" + collect2);
4.3.2.6.4 接合(joining)
joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); //字符串拼接 string collect = strlist.stream().collect(collectors.joining("-")); //所有员工的名字 string collect1 = personlist.stream().map(person::getname).collect(collectors.joining(",")); system.out.println("所有员工的姓名:" + collect1); system.out.println("拼接后的字符串:" + collect);
4.3.2.6.5 归约(reducing)
collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子) integer collect = personlist.stream().collect(collectors.reducing(0, person::getsalary, (i, j) -> i + j - 5000)); system.out.println("员工扣税薪资总和:" + collect); // stream的reduce optional<integer> reduce = personlist.stream().map(person::getsalary).reduce(integer::sum); system.out.println("员工扣税薪资总和:" + reduce.get());
4.3.2.7 排序(sorted)
解释
- sorted():自然排序,流中元素需实现comparable接口
- sorted(comparator com):comparator排序器自定义排序
list<person> personlist = new arraylist<person>(); personlist.add(new person("tom", 8900, 11,"male", "new york")); personlist.add(new person("jack", 7000, 12,"male", "washington")); personlist.add(new person("lily", 7800, 13,"female", "washington")); personlist.add(new person("anni", 8200, 14,"female", "new york")); personlist.add(new person("owen", 9500, 15,"male", "new york")); personlist.add(new person("alisa", 7900, 16,"female", "new york")); list<integer> list = arrays.aslist(1,2,3,4,7,6,5,8); list<string> strlist = arrays.aslist("ad,nm", "adm,mt", "p,ot", "xb,angd", "weou,jgsd"); // 按工资增序排序 list<string> newlist = personlist.stream().sorted(comparator.comparing(person::getsalary)).map(person::getname) .collect(collectors.tolist()); // 按工资倒序排序 list<string> newlist2 = personlist.stream().sorted(comparator.comparing(person::getsalary).reversed()) .map(person::getname).collect(collectors.tolist()); // 先按工资再按年龄自然排序(从小到大) list<string> newlist3 = personlist.stream().sorted(comparator.comparing(person::getsalary).reversed()) .map(person::getname).collect(collectors.tolist()); // 先按工资再按年龄自定义排序(从大到小) list<string> newlist4 = personlist.stream().sorted((p1, p2) -> { if (p1.getsalary() == p2.getsalary()) { return p2.getage() - p1.getage(); } else { return p2.getsalary() - p1.getsalary(); } }).map(person::getname).collect(collectors.tolist()); system.out.println("按工资自然排序:" + newlist); system.out.println("按工资降序排序:" + newlist2); system.out.println("先按工资再按年龄自然排序:" + newlist3); system.out.println("先按工资再按年龄自定义降序排序:" + newlist4);
4.3.2.8 提取/组合(distinct,skip,limit)
流也可以进行合并、去重、限制、跳过等操作。
string[] arr1 = { "a", "b", "c", "d" }; string[] arr2 = { "d", "e", "f", "g" }; stream<string> stream1 = stream.of(arr1); stream<string> stream2 = stream.of(arr2); // concat:合并两个流 distinct:去重 list<string> newlist = stream.concat(stream1, stream2).distinct().collect(collectors.tolist()); // limit:限制从流中获得前n个数据 list<integer> collect = stream.iterate(1, x -> x + 2).limit(10).collect(collectors.tolist()); // skip:跳过前n个数据 list<integer> collect2 = stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(collectors.tolist()); system.out.println("流合并:" + newlist); system.out.println("limit:" + collect); system.out.println("skip:" + collect2);
到此这篇关于java stream流使用案例深入详解的文章就介绍到这了,更多相关java stream流内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!
发表评论