当前位置: 代码网 > 科技>操作系统>Windows > 【LLM】Windows本地CPU部署民间版中文羊驼模型(Chinese-LLaMA-Alpaca)踩坑记录

【LLM】Windows本地CPU部署民间版中文羊驼模型(Chinese-LLaMA-Alpaca)踩坑记录

2024年08月05日 Windows 我要评论
想必有小伙伴也想跟我一样体验下部署大语言模型, 但碍于经济实力, 不过民间上出现了大量的量化模型, 我们平民也能体验体验啦~, 该模型可以在笔记本电脑上部署, 确保你电脑至少有16G运行内存。

目录

前言

准备工作

git 

python3.9 

cmake

下载模型 

合并模型

部署模型 


前言

想必有小伙伴也想跟我一样体验下部署大语言模型, 但碍于经济实力, 不过民间上出现了大量的量化模型, 我们平民也能体验体验啦~, 该模型可以在笔记本电脑上部署, 确保你电脑至少有16g运行内存

开原地址:github - ymcui/chinese-llama-alpaca: 中文llama&alpaca大语言模型+本地cpu部署 (chinese llama & alpaca llms)

linux和mac的教程在开源的仓库中有提供,当然如果你是m1的也可以参考以下文章:

https://gist.github.com/cedrickchee/e8d4cb0c4b1df6cc47ce8b18457ebde0


准备工作

最好是有代理, 不然你下载东西可能失败, 我为了下个模型花了一天时间, 痛哭~ 

我们需要先在电脑上安装以下环境:  

  • git
  • python3.9(使用anaconda3创建该环境) 
  • cmake(如果你电脑没有c和c++的编译环境还需要安装mingw)

git 

下载地址:git - downloading package 

在cmd窗口输入以下如果有版本号显示说明已经安装成功

git -v

python3.9 

 我这里使用anaconda3来使用python, anaconda3是什么?

 anaconda3下载地址:anaconda | anaconda distribution

 安装步骤参考:

在cmd窗口输入以下命令, 显示版本号则说明安装成功

conda -v

接下来我们在cmd窗口输入以下命令创建一个python3.9的环境 

conda create --name py39 python=3.9 -y

查看有哪些环境的命令:

conda info -e

激活/切换环境的命令:

conda activate py39

 要使用哪个环境的话换成对应名字即可

 进入环境后你就可以在这输入python相关的命令了, 如:

 要退出环境的话输入:

conda deactivate

当我退出环境后再查看python版本的话会提示我不是内部或外部命令,也不是可运行的程序
或批处理文件。如:

cmake

这是一个编译工具, 我们需要使用它去编译llama.cpp, 量化模型需要用到, 不量化模型个人电脑跑不起来, 觉得量化这个概念不理解的可以理解为压缩, 这种概念是不对的, 只是为了帮助你更好的理解.

在安装之前我们需要安装mingw, 避免编译时找不到编译环境, 按下win+r快捷键输入powershell

输入命令安装scoop, 这是一个包管理器, 我们使用它来下载安装mingw:

这个地方如果没有开代理的话可能会出错 

iex "& {$(irm get.scoop.sh)} -runasadmin"

安装好后分别运行下面两个命令(添加库):

scoop bucket add extras
scoop bucket add main

 输入命令安装mingw

scoop install mingw

到这就已经安装好mingw了, 如果报错了请评论, 我看到了会回复

接下来安装cmake

地址:download | cmake 

 安装参考:


下载模型 

我们需要下载两个模型, 一个是原版的llama模型, 一个是扩充了中文的模型, 后续会进行一个合并模型的操作

  • 扩充了中文的模型下载:

建议在d盘上新建一个文件夹, 在里面进行下载操作, 如下:

 在弹出的框中分别输入以下命令:

git lfs install
git clone https://huggingface.co/ziqingyang/chinese-alpaca-lora-7b

这里可能会因为网络问题一直失败......一直重试就行, 有别的问题请评论, 看到会回复


合并模型

终于写到这里了, 累~

在你下载了模型的目录内打开cmd窗口, 如下:

 打开窗口后需要先激活python环境, 使用的就是前面装anaconda3

# 不记得有哪些环境的先运行以下命令
conda info -e

# 然后激活你需要的环境  我的环境名是py39
conda activate py39

切换好后分别执行以下命令安装依赖库

pip install git+https://github.com/huggingface/transformers

pip install sentencepiece==0.1.97

pip install peft==0.2.0

执行命令安装成功后会有successfully的字眼

 接下来需要将原版模型转hf格式, 需要借助最新版🤗transformers提供的脚本convert_llama_weights_to_hf.py

在目录内新建一个convert_llama_weights_to_hf.py文件, 用记事本打开后把以下代码粘贴进去

注意:我这里是为了方便直接拷贝出来了,脚本可能会更新,建议直接去以下地址拷贝最新的:

transformers/convert_llama_weights_to_hf.py at main · huggingface/transformers · github

# copyright 2022 eleutherai and the huggingface inc. team. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import argparse
import gc
import json
import math
import os
import shutil
import warnings

import torch

from transformers import llamaconfig, llamaforcausallm, llamatokenizer


try:
    from transformers import llamatokenizerfast
except importerror as e:
    warnings.warn(e)
    warnings.warn(
        "the converted tokenizer will be the `slow` tokenizer. to use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
    )
    llamatokenizerfast = none

"""
sample usage:

```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
    --input_dir /path/to/downloaded/llama/weights --model_size 7b --output_dir /output/path
```

thereafter, models can be loaded via:

```py
from transformers import llamaforcausallm, llamatokenizer

model = llamaforcausallm.from_pretrained("/output/path")
tokenizer = llamatokenizer.from_pretrained("/output/path")
```

important note: you need to be able to host the whole model in ram to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in ram).
"""

intermediate_size_map = {
    "7b": 11008,
    "13b": 13824,
    "30b": 17920,
    "65b": 22016,
}
num_shards = {
    "7b": 1,
    "13b": 2,
    "30b": 4,
    "65b": 8,
}


def compute_intermediate_size(n):
    return int(math.ceil(n * 8 / 3) + 255) // 256 * 256


def read_json(path):
    with open(path, "r") as f:
        return json.load(f)


def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)


def write_model(model_path, input_base_path, model_size):
    os.makedirs(model_path, exist_ok=true)
    tmp_model_path = os.path.join(model_path, "tmp")
    os.makedirs(tmp_model_path, exist_ok=true)

    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = num_shards[model_size]
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    n_heads_per_shard = n_heads // num_shards
    dim = params["dim"]
    dims_per_head = dim // n_heads
    base = 10000.0
    inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

    # permute for sliced rotary
    def permute(w):
        return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)

    print(f"fetching all parameters from the checkpoint at {input_base_path}.")
    # load weights
    if model_size == "7b":
        # not shared
        # (the sharded implementation would also work, but this is simpler.)
        loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
    else:
        # sharded
        loaded = [
            torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
            for i in range(num_shards)
        ]
    param_count = 0
    index_dict = {"weight_map": {}}
    for layer_i in range(n_layers):
        filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
        if model_size == "7b":
            # unsharded
            state_dict = {
                f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wq.weight"]
                ),
                f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wk.weight"]
                ),
                f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
                f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
                f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
                f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
                f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
            }
        else:
            # sharded
            # note that in the 13b checkpoint, not cloning the two following weights will result in the checkpoint
            # becoming 37gb instead of 26gb for some reason.
            state_dict = {
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.attention_norm.weight"
                ].clone(),
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.ffn_norm.weight"
                ].clone(),
            }
            state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(num_shards)
                    ],
                    dim=0,
                ).reshape(dim, dim)
            )
            state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(num_shards)
                    ],
                    dim=0,
                ).reshape(dim, dim)
            )
            state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
                    for i in range(num_shards)
                ],
                dim=0,
            ).reshape(dim, dim)

            state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
            )
            state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
            )

        state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(tmp_model_path, filename))

    filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
    if model_size == "7b":
        # unsharded
        state_dict = {
            "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
            "model.norm.weight": loaded["norm.weight"],
            "lm_head.weight": loaded["output.weight"],
        }
    else:
        state_dict = {
            "model.norm.weight": loaded[0]["norm.weight"],
            "model.embed_tokens.weight": torch.cat(
                [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
            ),
            "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
        }

    for k, v in state_dict.items():
        index_dict["weight_map"][k] = filename
        param_count += v.numel()
    torch.save(state_dict, os.path.join(tmp_model_path, filename))

    # write configs
    index_dict["metadata"] = {"total_size": param_count * 2}
    write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))

    config = llamaconfig(
        hidden_size=dim,
        intermediate_size=compute_intermediate_size(dim),
        num_attention_heads=params["n_heads"],
        num_hidden_layers=params["n_layers"],
        rms_norm_eps=params["norm_eps"],
    )
    config.save_pretrained(tmp_model_path)

    # make space so we can load the model properly now.
    del state_dict
    del loaded
    gc.collect()

    print("loading the checkpoint in a llama model.")
    model = llamaforcausallm.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=true)
    # avoid saving this as part of the config.
    del model.config._name_or_path

    print("saving in the transformers format.")
    model.save_pretrained(model_path)
    shutil.rmtree(tmp_model_path)


def write_tokenizer(tokenizer_path, input_tokenizer_path):
    # initialize the tokenizer based on the `spm` model
    tokenizer_class = llamatokenizer if llamatokenizerfast is none else llamatokenizerfast
    print("saving a {tokenizer_class} to {tokenizer_path}")
    tokenizer = tokenizer_class(input_tokenizer_path)
    tokenizer.save_pretrained(tokenizer_path)


def main():
    parser = argparse.argumentparser()
    parser.add_argument(
        "--input_dir",
        help="location of llama weights, which contains tokenizer.model and model folders",
    )
    parser.add_argument(
        "--model_size",
        choices=["7b", "13b", "30b", "65b", "tokenizer_only"],
    )
    parser.add_argument(
        "--output_dir",
        help="location to write hf model and tokenizer",
    )
    args = parser.parse_args()
    if args.model_size != "tokenizer_only":
        write_model(
            model_path=args.output_dir,
            input_base_path=os.path.join(args.input_dir, args.model_size),
            model_size=args.model_size,
        )
    spm_path = os.path.join(args.input_dir, "tokenizer.model")
    write_tokenizer(args.output_dir, spm_path)


if __name__ == "__main__":
    main()

在cmd窗口执行命令(如果你使用了anaconda,执行命令前请先激活环境):

python convert_llama_weights_to_hf.py --input_dir path_to_original_llama_root_dir --model_size 7b --output_dir path_to_original_llama_hf_dir

经过漫长的等待....

 接下来合并输出pytorch版本权重(.pth文件),使用merge_llama_with_chinese_lora.py脚本

在目录新建一个merge_llama_with_chinese_lora.py文件, 用记事本打开将以下代码粘贴进去

注意:我这里是为了方便直接拷贝出来了,脚本可能会更新,建议直接去以下地址拷贝最新的: 

chinese-llama-alpaca/merge_llama_with_chinese_lora.py at main · ymcui/chinese-llama-alpaca · github

"""
borrowed and modified from https://github.com/tloen/alpaca-lora
"""

import argparse
import os
import json
import gc

import torch
import transformers
import peft
from peft import peftmodel

parser = argparse.argumentparser()
parser.add_argument('--base_model',default=none,required=true,type=str,help="please specify a base_model")
parser.add_argument('--lora_model',default=none,required=true,type=str,help="please specify a lora_model")

# deprecated; the script infers the model size from the checkpoint
parser.add_argument('--model_size',default='7b',type=str,help="size of the llama model",choices=['7b','13b'])

parser.add_argument('--offload_dir',default=none,type=str,help="(optional) please specify a temp folder for offloading (useful for low-ram machines). default none (disable offload).")
parser.add_argument('--output_dir',default='./',type=str)
args = parser.parse_args()


assert (
    "llamatokenizer" in transformers._import_structure["models.llama"]
), "llama is now in huggingface's main branch.\nplease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import llamatokenizer, llamaforcausallm

base_model = args.base_model
lora_model = args.lora_model
output_dir = args.output_dir

assert (
    base_model
), "please specify a base_model in the script, e.g. 'decapoda-research/llama-7b-hf'"

tokenizer = llamatokenizer.from_pretrained(lora_model)
if args.offload_dir is not none:
    # load with offloading, which is useful for low-ram machines.
    # note that if you have enough ram, please use original method instead, as it is faster.
    base_model = llamaforcausallm.from_pretrained(
        base_model,
        load_in_8bit=false,
        torch_dtype=torch.float16,
        offload_folder=args.offload_dir,
        offload_state_dict=true,
        low_cpu_mem_usage=true,
        device_map={"": "cpu"},
    )
else:
    # original method without offloading
    base_model = llamaforcausallm.from_pretrained(
        base_model,
        load_in_8bit=false,
        torch_dtype=torch.float16,
        device_map={"": "cpu"},
    )

base_model.resize_token_embeddings(len(tokenizer))
assert base_model.get_input_embeddings().weight.size(0) == len(tokenizer)
tokenizer.save_pretrained(output_dir)
print(f"extended vocabulary size: {len(tokenizer)}")

first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()

## infer the model size from the checkpoint
emb_to_model_size = {
    4096 : '7b',
    5120 : '13b',
    6656 : '30b',
    8192 : '65b',
}
embedding_size = base_model.get_input_embeddings().weight.size(1)
model_size = emb_to_model_size[embedding_size]
print(f"loading lora for {model_size} model")

lora_model = peftmodel.from_pretrained(
    base_model,
    lora_model,
    device_map={"": "cpu"},
    torch_dtype=torch.float16,
)

assert torch.allclose(first_weight_old, first_weight)
# merge weights
print(f"peft version: {peft.__version__}")
print(f"merging model")
if peft.__version__ > '0.2.0':
    # merge weights - new merging method from peft
    lora_model = lora_model.merge_and_unload()
else:
    # merge weights
    for layer in lora_model.base_model.model.model.layers:
        if hasattr(layer.self_attn.q_proj,'merge_weights'):
            layer.self_attn.q_proj.merge_weights = true
        if hasattr(layer.self_attn.v_proj,'merge_weights'):
            layer.self_attn.v_proj.merge_weights = true
        if hasattr(layer.self_attn.k_proj,'merge_weights'):
            layer.self_attn.k_proj.merge_weights = true
        if hasattr(layer.self_attn.o_proj,'merge_weights'):
            layer.self_attn.o_proj.merge_weights = true
        if hasattr(layer.mlp.gate_proj,'merge_weights'):
            layer.mlp.gate_proj.merge_weights = true
        if hasattr(layer.mlp.down_proj,'merge_weights'):
            layer.mlp.down_proj.merge_weights = true
        if hasattr(layer.mlp.up_proj,'merge_weights'):
            layer.mlp.up_proj.merge_weights = true

lora_model.train(false)

# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)

lora_model_sd = lora_model.state_dict()
del lora_model, base_model

num_shards_of_models = {'7b': 1, '13b': 2}
params_of_models = {
    '7b':
        {
        "dim": 4096,
        "multiple_of": 256,
        "n_heads": 32,
        "n_layers": 32,
        "norm_eps": 1e-06,
        "vocab_size": -1,
        },
    '13b':
        {
        "dim": 5120,
        "multiple_of": 256,
        "n_heads": 40,
        "n_layers": 40,
        "norm_eps": 1e-06,
        "vocab_size": -1,
        },
}

params = params_of_models[model_size]
num_shards = num_shards_of_models[model_size]


n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))


def permute(w):
    return (
        w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
    )


def unpermute(w):
    return (
        w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
    )


def translate_state_dict_key(k):
    k = k.replace("base_model.model.", "")
    if k == "model.embed_tokens.weight":
        return "tok_embeddings.weight"
    elif k == "model.norm.weight":
        return "norm.weight"
    elif k == "lm_head.weight":
        return "output.weight"
    elif k.startswith("model.layers."):
        layer = k.split(".")[2]
        if k.endswith(".self_attn.q_proj.weight"):
            return f"layers.{layer}.attention.wq.weight"
        elif k.endswith(".self_attn.k_proj.weight"):
            return f"layers.{layer}.attention.wk.weight"
        elif k.endswith(".self_attn.v_proj.weight"):
            return f"layers.{layer}.attention.wv.weight"
        elif k.endswith(".self_attn.o_proj.weight"):
            return f"layers.{layer}.attention.wo.weight"
        elif k.endswith(".mlp.gate_proj.weight"):
            return f"layers.{layer}.feed_forward.w1.weight"
        elif k.endswith(".mlp.down_proj.weight"):
            return f"layers.{layer}.feed_forward.w2.weight"
        elif k.endswith(".mlp.up_proj.weight"):
            return f"layers.{layer}.feed_forward.w3.weight"
        elif k.endswith(".input_layernorm.weight"):
            return f"layers.{layer}.attention_norm.weight"
        elif k.endswith(".post_attention_layernorm.weight"):
            return f"layers.{layer}.ffn_norm.weight"
        elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
            return none
        else:
            print(layer, k)
            raise notimplementederror
    else:
        print(k)
        raise notimplementederror


def save_shards(lora_model_sd, num_shards: int):
    # add the no_grad context manager
    with torch.no_grad():
        if num_shards == 1:
            new_state_dict = {}
            for k, v in lora_model_sd.items():
                new_k = translate_state_dict_key(k)
                if new_k is not none:
                    if "wq" in new_k or "wk" in new_k:
                        new_state_dict[new_k] = unpermute(v)
                    else:
                        new_state_dict[new_k] = v

            os.makedirs(output_dir, exist_ok=true)
            print(f"saving shard 1 of {num_shards} into {output_dir}/consolidated.00.pth")
            torch.save(new_state_dict, output_dir + "/consolidated.00.pth")
            with open(output_dir + "/params.json", "w") as f:
                json.dump(params, f)
        else:
            new_state_dicts = [dict() for _ in range(num_shards)]
            for k in list(lora_model_sd.keys()):
                v = lora_model_sd[k]
                new_k = translate_state_dict_key(k)
                if new_k is not none:
                    if new_k=='tok_embeddings.weight':
                        print(f"processing {new_k}")
                        assert v.size(1)%num_shards==0
                        splits = v.split(v.size(1)//num_shards,dim=1)
                    elif new_k=='output.weight':
                        print(f"processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)

                    elif new_k=='norm.weight':
                        print(f"processing {new_k}")
                        splits = [v] * num_shards
                    elif 'ffn_norm.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = [v] * num_shards
                    elif 'attention_norm.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = [v] * num_shards


                    elif 'w1.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)
                    elif 'w2.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = v.split(v.size(1)//num_shards,dim=1)
                    elif 'w3.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)


                    elif 'wo.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = v.split(v.size(1)//num_shards,dim=1)

                    elif 'wv.weight' in new_k:
                        print(f"processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)

                    elif "wq.weight" in new_k or "wk.weight" in new_k:
                        print(f"processing {new_k}")
                        v = unpermute(v)
                        splits = v.split(v.size(0)//num_shards,dim=0)
                    else:
                        print(f"unexpected key {new_k}")
                        raise valueerror
                    for sd,split in zip(new_state_dicts,splits):
                        sd[new_k] = split.clone()
                        del split
                    del splits
                del lora_model_sd[k],v
                gc.collect()    # effectively enforce garbage collection

            os.makedirs(output_dir, exist_ok=true)
            for i,new_state_dict in enumerate(new_state_dicts):
                print(f"saving shard {i+1} of {num_shards} into {output_dir}/consolidated.0{i}.pth")
                torch.save(new_state_dict, output_dir + f"/consolidated.0{i}.pth")
            with open(output_dir + "/params.json", "w") as f:
                print(f"saving params.json into {output_dir}/params.json")
                json.dump(params, f)


save_shards(lora_model_sd=lora_model_sd, num_shards=num_shards)

 执行命令(如果你使用了anaconda,执行命令前请先激活环境):

python merge_llama_with_chinese_lora.py --base_model path_to_original_llama_hf_dir --lora_model chinese-alpaca-lora-7b --output_dir path_to_output_dir

参数说明:

  • --base_model:存放hf格式的llama模型权重和配置文件的目录(前面步骤中转的hf格式)
  • --lora_model:扩充了中文的模型目录
  • --output_dir:指定保存全量模型权重的目录,默认为./(合并出来的目录)
  • (可选)--offload_dir:对于低内存用户需要指定一个offload缓存路径

到这里就已经合并好模型了, 目录:

接下来就准备部署吧


部署模型 

我们需要先下载llama.cpp进行模型的量化, 输入以下命令: 

git clone https://github.com/ggerganov/llama.cpp

目录如: 

 重点来了, 在窗口中输入以下命令进入刚刚下载的llama.cpp

cd llama.cpp

 如果你是跟着教程使用scoop(包管理器)安装的mingw,请使用以下命令(不是的请往后看):

cmake . -g "mingw makefiles"

cmake --build . --config release

 走完以上命令后你应该能在llama.cpp的bin目录内看到以下文件:

 如果你是使用的安装包的方式安装的mingw,请使用以下命令:

mkdir build

cd build

cmake ..

cmake --build . --config release

走完以上命令后在build =》release =》bin目录下应该会有以下文件:

如果没有以上的文件, 那你应该是报错了, 基本上要么就是下载依赖的地方错, 要么就是编译的地方出错, 我在这里摸索了好久 

接下来在llama.cpp内新建一个zh-models文件夹, 准备生成量化版本模型

接着在窗口中输入命令将上述.pth模型权重转换为ggml的fp16格式,生成文件路径为zh-models/7b/ggml-model-f16.bin

python convert-pth-to-ggml.py zh-models/7b/ 1

 进一步对fp16模型进行4-bit量化,生成量化模型文件路径为zh-models/7b/ggml-model-q4_0.bin

d:\llama\llama.cpp\bin\quantize.exe ./zh-models/7b/ggml-model-f16.bin ./zh-models/7b/ggml-model-q4_0.bin 2

​到这就已经量化好了, 可以进行部署看看效果了, 部署的话如果你电脑配置好的可以选择部署f16的,否则就部署q4_0的....

d:\llama\llama.cpp\bin\main.exe -m zh-models/7b/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3

在提示符 > 之后输入你的prompt,cmd/ctrl+c中断输出,多行信息以\作为行尾 

部署效果:

终于写完了~


参考:


👍点赞,你的认可是我创作的动力 !
🌟收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!   

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com