一、sqlserver的安装及开启事务日志
如果没有sqlserver
环境,但你又想学习这块的内容,那你只能自己动手通过docker
安装一个 myself sqlserver
来用作学习,当然,如果你有现成环境,那就检查一下sqlserver
是否开启了代理(sqlagent.enabled
)服务和cdc
功能。
1.1 docker拉取镜像
看github
上写flink-cdc
目前支持的sqlserver
版本为2012, 2014, 2016, 2017, 2019,但我想全部拉到最新(事实证明,2022-latest 和latest是一样的,因为imagid
都是一致的,且在后续测试也是没有问题的),所以我在docker
上拉取镜像时,直接采用如下命令:
docker pull mcr.microsoft.com/mssql/server:latest
1.2 运行sqlserver并设置代理
标准启动模式,没什么好说的,主要设置一下密码(密码要求比较严格,建议直接在网上搜个随机密码生成器来搞一下)。
docker run -e 'accept_eula=y' -e 'sa_password=${your_password}' \
-p 1433:1433 --name sqlserver \
-d mcr.microsoft.com/mssql/server:latest
设置代理sqlagent.enabled
,代理设置完成后,需要重启sqlserver
,因为我们是docker
安装的,直接用docker restart sqlserver
就行了。
[root@hdp-01 ~]# docker exec -it --user root sqlserver bash
root@0274812d0c10:/# /opt/mssql/bin/mssql-conf set sqlagent.enabled true
sql server needs to be restarted in order to apply this setting. please run
'systemctl restart mssql-server.service'.
root@0274812d0c10:/# exit
exit
[root@hdp-01 ~]# docker restart sqlserver
sqlserver
1.3 启用cdc功能
按照如下步骤执行命令,如果看到is_cdc_enabled = 1
,则说明当前数据库
root@0274812d0c10:/# /opt/mssql-tools/bin/sqlcmd -s localhost -u sa -p "${your_password}"
1> create databases test;
2> go
1> use test;
2> go
changed database context to 'test'.
1> exec sys.sp_cdc_enable_db;
2> go
1> select is_cdc_enabled from sys.databases where name = 'test';
2> go
is_cdc_enabled
--------------
1
(1 rows affected)
1> create table t_info (id int,order_date date,purchaser int,quantity int,product_id int,primary key ([id]))
2> go
1>
2>
3> exec sys.sp_cdc_enable_table
4> @source_schema = 'dbo',
5> @source_name = 't_info',
6> @role_name = 'cdc_role';
7> go
update mask evaluation will be disabled in net_changes_function because the clr configuration option is disabled.
job 'cdc.zeus_capture' started successfully.
job 'cdc.zeus_cleanup' started successfully.
1> select * from t_info;
2> go
id order_date purchaser quantity product_id
----------- ---------------- ----------- ----------- -----------
(0 rows affected)
1.4 检查cdc是否正常开启
用客户端连接sqlserver
,查看test
库下的information_schema.tables
中是否出现table_schema = cdc
的表,如果出现,说明已经成功安装sqlserver
并启用了cdc
。
1> use test;
2> go
changed database context to 'test'.
1> select * from information_schema.tables;
2> go
table_catalog table_schema table_name table_type
test dbo user_info base table
test dbo systranschemas base table
test cdc change_tables base table
test cdc ddl_history base table
test cdc lsn_time_mapping base table
test cdc captured_columns base table
test cdc index_columns base table
test dbo orders base table
test cdc dbo_orders_ct base table
二、具体实现
2.1 flik-cdc采集sqlserver主程序
添加依赖包:
<dependency>
<groupid>com.ververica</groupid>
<artifactid>flink-connector-sqlserver-cdc</artifactid>
<version>3.0.0</version>
</dependency>
编写主函数:
public static void main(string[] args) throws exception {
streamexecutionenvironment env = streamexecutionenvironment.getexecutionenvironment();
// 设置全局并行度
env.setparallelism(1);
// 设置时间语义为processingtime
env.getconfig().setautowatermarkinterval(0);
// 每隔60s启动一个检查点
env.enablecheckpointing(60000, checkpointingmode.exactly_once);
// checkpoint最小间隔
env.getcheckpointconfig().setminpausebetweencheckpoints(1000);
// checkpoint超时时间
env.getcheckpointconfig().setcheckpointtimeout(60000);
// 同一时间只允许一个checkpoint
// env.getcheckpointconfig().setmaxconcurrentcheckpoints(1);
// flink处理程序被cancel后,会保留checkpoint数据
// env.getcheckpointconfig().setexternalizedcheckpointcleanup(checkpointconfig.externalizedcheckpointcleanup.retain_on_cancellation);
sourcefunction<string> sqlserversource = sqlserversource.<string>builder()
.hostname("localhost")
.port(1433)
.username("sa")
.password("")
.database("test")
.tablelist("dbo.t_info")
.startupoptions(startupoptions.initial())
.debeziumproperties(getdebeziumproperties())
.deserializer(new customerdeserializationschemasqlserver())
.build();
datastreamsource<string> datastreamsource = env.addsource(sqlserversource, "_transaction_log_source");
datastreamsource.print().setparallelism(1);
env.execute("sqlserver-cdc-test");
}
public static properties getdebeziumproperties() {
properties properties = new properties();
properties.put("converters", "sqlserverdebeziumconverter");
properties.put("sqlserverdebeziumconverter.type", "sqlserverdebeziumconverter");
properties.put("sqlserverdebeziumconverter.database.type", "sqlserver");
// 自定义格式,可选
properties.put("sqlserverdebeziumconverter.format.datetime", "yyyy-mm-dd hh:mm:ss");
properties.put("sqlserverdebeziumconverter.format.date", "yyyy-mm-dd");
properties.put("sqlserverdebeziumconverter.format.time", "hh:mm:ss");
return properties;
}
2.2 自定义sqlserver
反序列化格式:
flink-cdc
底层技术为debezium
,它捕获到sqlserver
数据变更(crud)的数据格式如下:
#初始化
struct{after=struct{id=1,order_date=2024-01-30,purchaser=1,quantity=100,product_id=1},source=struct{version=1.9.7.final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706574924473,snapshot=true,db=zeus,schema=dbo,table=orders,commit_lsn=0000002b:00002280:0003},op=r,ts_ms=1706603724432}
#新增
struct{after=struct{id=12,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},source=struct{version=1.9.7.final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603786187,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:00002480:0002,commit_lsn=0000002b:00002480:0003,event_serial_no=1},op=c,ts_ms=1706603788461}
#更新
struct{before=struct{id=12,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},after=struct{id=12,order_date=2024-01-11,purchaser=8,quantity=233,product_id=63},source=struct{version=1.9.7.final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603845603,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:00002500:0002,commit_lsn=0000002b:00002500:0003,event_serial_no=2},op=u,ts_ms=1706603850134}
#删除
struct{before=struct{id=11,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},source=struct{version=1.9.7.final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603973023,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:000025e8:0002,commit_lsn=0000002b:000025e8:0005,event_serial_no=1},op=d,ts_ms=1706603973859}
因此,可以根据自己需要自定义反序列化格式,将数据按照标准统一数据输出,下面是我自定义的格式,供大家参考:
import com.alibaba.fastjson2.json;
import com.alibaba.fastjson2.jsonobject;
import com.alibaba.fastjson2.jsonwriter;
import com.ververica.cdc.debezium.debeziumdeserializationschema;
import io.debezium.data.envelope;
import org.apache.flink.api.common.typeinfo.basictypeinfo;
import org.apache.flink.api.common.typeinfo.typeinformation;
import org.apache.flink.util.collector;
import org.apache.kafka.connect.data.field;
import org.apache.kafka.connect.data.schema;
import org.apache.kafka.connect.data.struct;
import org.apache.kafka.connect.source.sourcerecord;
import java.util.hashmap;
import java.util.map;
public class customerdeserializationschemasqlserver implements debeziumdeserializationschema<string> {
private static final long serialversionuid = -1l;
@override
public void deserialize(sourcerecord sourcerecord, collector collector) {
map<string, object> resultmap = new hashmap<>();
string topic = sourcerecord.topic();
string[] split = topic.split("[.]");
string database = split[1];
string table = split[2];
resultmap.put("db", database);
resultmap.put("tablename", table);
//获取操作类型
envelope.operation operation = envelope.operationfor(sourcerecord);
//获取数据本身
struct struct = (struct) sourcerecord.value();
struct after = struct.getstruct("after");
struct before = struct.getstruct("before");
string op = operation.name();
resultmap.put("op", op);
//新增,更新或者初始化
if (op.equals(envelope.operation.create.name()) || op.equals(envelope.operation.read.name()) || op.equals(envelope.operation.update.name())) {
jsonobject afterjson = new jsonobject();
if (after != null) {
schema schema = after.schema();
for (field field : schema.fields()) {
afterjson.put(field.name(), after.get(field.name()));
}
resultmap.put("after", afterjson);
}
}
if (op.equals(envelope.operation.delete.name())) {
jsonobject beforejson = new jsonobject();
if (before != null) {
schema schema = before.schema();
for (field field : schema.fields()) {
beforejson.put(field.name(), before.get(field.name()));
}
resultmap.put("before", beforejson);
}
}
collector.collect(json.tojsonstring(resultmap, jsonwriter.feature.fieldbased, jsonwriter.feature.largeobject));
}
@override
public typeinformation<string> getproducedtype() {
return basictypeinfo.string_type_info;
}
}
2.3 自定义日期格式转换器
debezium
会将日期转为5位数字,日期时间转为13位的数字,因此我们需要根据sqlserver
的日期类型转换成标准的时期或者时间格式。sqlserver
的日期类型主要包含以下几种:
字段类型 | 快照类型(jdbc type) | cdc类型(jdbc type) |
---|---|---|
date | java.sql.date(91) | java.sql.date(91) |
time | java.sql.timestamp(92) | java.sql.time(92) |
datetime | java.sql.timestamp(93) | java.sql.timestamp(93) |
datetime2 | java.sql.timestamp(93) | java.sql.timestamp(93) |
datetimeoffset | microsoft.sql.datetimeoffset(-155) | microsoft.sql.datetimeoffset(-155) |
smalldatetime | java.sql.timestamp(93) | java.sql.timestamp(93) |
import io.debezium.spi.converter.customconverter;
import io.debezium.spi.converter.relationalcolumn;
import org.apache.kafka.connect.data.schemabuilder;
import java.time.zoneoffset;
import java.time.format.datetimeformatter;
import java.util.properties;
@sl4j
public class sqlserverdebeziumconverter implements customconverter<schemabuilder, relationalcolumn> {
private static final string date_format = "yyyy-mm-dd";
private static final string time_format = "hh:mm:ss";
private static final string datetime_format = "yyyy-mm-dd hh:mm:ss";
private datetimeformatter dateformatter;
private datetimeformatter timeformatter;
private datetimeformatter datetimeformatter;
private schemabuilder schemabuilder;
private string databasetype;
private string schemanameprefix;
@override
public void configure(properties properties) {
// 必填参数:database.type,只支持sqlserver
this.databasetype = properties.getproperty("database.type");
// 如果未设置,或者设置的不是mysql、sqlserver,则抛出异常。
if (this.databasetype == null || !this.databasetype.equals("sqlserver"))) {
throw new illegalargumentexception("database.type 必须设置为'sqlserver'");
}
// 选填参数:format.date、format.time、format.datetime。获取时间格式化的格式
string dateformat = properties.getproperty("format.date", date_format);
string timeformat = properties.getproperty("format.time", time_format);
string datetimeformat = properties.getproperty("format.datetime", datetime_format);
// 获取自身类的包名+数据库类型为默认schema.name
string classname = this.getclass().getname();
// 查看是否设置schema.name.prefix
this.schemanameprefix = properties.getproperty("schema.name.prefix", classname + "." + this.databasetype);
// 初始化时间格式化器
dateformatter = datetimeformatter.ofpattern(dateformat);
timeformatter = datetimeformatter.ofpattern(timeformat);
datetimeformatter = datetimeformatter.ofpattern(datetimeformat);
}
// sqlserver的转换器
public void registersqlserverconverter(string columntype, converterregistration<schemabuilder> converterregistration) {
string schemaname = this.schemanameprefix + "." + columntype.tolowercase();
schemabuilder = schemabuilder.string().name(schemaname);
switch (columntype) {
case "date":
converterregistration.register(schemabuilder, value -> {
if (value == null) {
return null;
} else if (value instanceof java.sql.date) {
return dateformatter.format(((java.sql.date) value).tolocaldate());
} else {
return this.failconvert(value, schemaname);
}
});
break;
case "time":
converterregistration.register(schemabuilder, value -> {
if (value == null) {
return null;
} else if (value instanceof java.sql.time) {
return timeformatter.format(((java.sql.time) value).tolocaltime());
} else if (value instanceof java.sql.timestamp) {
return timeformatter.format(((java.sql.timestamp) value).tolocaldatetime().tolocaltime());
} else {
return this.failconvert(value, schemaname);
}
});
break;
case "datetime":
case "datetime2":
case "smalldatetime":
case "datetimeoffset":
converterregistration.register(schemabuilder, value -> {
if (value == null) {
return null;
} else if (value instanceof java.sql.timestamp) {
return datetimeformatter.format(((java.sql.timestamp) value).tolocaldatetime());
} else if (value instanceof microsoft.sql.datetimeoffset) {
microsoft.sql.datetimeoffset datetimeoffset = (microsoft.sql.datetimeoffset) value;
return datetimeformatter.format(
datetimeoffset.getoffsetdatetime().withoffsetsameinstant(zoneoffset.utc).tolocaldatetime());
} else {
return this.failconvert(value, schemaname);
}
});
break;
default:
schemabuilder = null;
break;
}
}
@override
public void converterfor(relationalcolumn relationalcolumn, converterregistration<schemabuilder> converterregistration) {
// 获取字段类型
string columntype = relationalcolumn.typename().touppercase();
// 根据数据库类型调用不同的转换器
if (this.databasetype.equals("sqlserver")) {
this.registersqlserverconverter(columntype, converterregistration);
} else {
log.warn("不支持的数据库类型: {}", this.databasetype);
schemabuilder = null;
}
}
private string getclassname(object value) {
if (value == null) {
return null;
}
return value.getclass().getname();
}
// 类型转换失败时的日志打印
private string failconvert(object value, string type) {
string valueclass = this.getclassname(value);
string valuestring = valueclass == null ? null : value.tostring();
return valuestring;
}
}
三、总计
目前fink-cdc
对这种增量采集传统数据库的技术已经封装的很好了,并且官方也给了详细的操作教程,但如果想要深入的学习一项技能,个人觉得还是要从头到尾操作一遍,一方面能够快速的提升自己,另一方面发现问题时,也能从不同的角度来思考解决方案,希望本篇文章能够给大家带来一点帮助。
发表评论