目录
参考内容https://www.bilibili.com/read/cv15490959/
数据文件、jar包、插件
https://pan.baidu.com/s/1mpquo0egkyztlhrcpik2qg?pwd=7w0k
1. 准备工作
在finebi6.0\webapps\webroot\web-inf\lib下放置jar包
启动finebi服务器
安装hive隔离插件
选择该文件
重启服务器
2. 新建数据库连接
在虚拟机后台启动metastore和hiveserver2服务(在hive目录下)
进入beeline客户端
--hive2://后可以是主机名--
!connect jdbc:hive2://192.168.224.112:10000
回车然后输入用户名,我的是root,再回车
密码根据自己的填(我没有),回车
如果不成功,就先配置虚拟机中/hadoop父文件夹/hadoop/etc/hadoop/core-site.xml文件
和/hive父文件夹/hive/conf/hive-site.xml文件
然后重启sh,后台挂起metastore,hiveserver2,启动beeline。
在fine bi上新建hive数据库连接
数据库名称为自己在hive中创建的数据库,主机为虚拟机ip,端口10000,用户名root
3. 在hive数据库中创建存放数据的表
创建dgy_30w表(myhive为我自己的数据库),操作在hive和beeline中都可以
create table myhive.dgy_30w (
msg_time string comment "消息发送时间",
sender_name string comment "发送人昵称",
sender_account string comment "发送人账号",
sender_sex string comment "发送人性别",
sender_ip string comment "发送人ip地址",
sender_os string comment "发送人操作系统",
sender_phonetype string comment "发送人手机型号",
sender_network string comment "发送人网络类型",
sender_gps string comment "发送人的gps定位",
receiver_name string comment "接收人呢称",
receiver_ip string comment "接收人ip",
receiver_account string comment "接收人账号",
receiver_os string comment "接收人操作系统",
receiver_phonetype string comment"接收人手机型号",
receiver_network string comment "接收人网络类型",
receiver_gps string comment"接收人的gps定位",
receiver_sex string comment"接收人性别",
msg_type string comment"消息类型",
distance string comment"双方距离",
message string comment"消息内容"
);
上传数据
方法一:
通过xshell的xftp把csv文件上传到虚拟机opt目录下
把csv文件数据上传到dgy_30w表中
load data local inpath '/opt/chat_data-30w.csv' overwrite into table dgy_30w;
方法二:
hdfs数据加载
将csv文件上传到hdfs /data下
hdfs dfs -put /opt/chat_data-30w.csv /data
在终端beeline中输入load data inpath '/data/chat_data-30w.csv' into table dgy_30w;
load data inpath '/data/chat_data-30w.csv' overwrite into table dgy_30w;
导入成功。
4. etl数据清洗
建立dgy_30w_etl表
create table myhive.dgy_30w_etl (
msg_time string comment "消息发送时间",
sender_name string comment "发送人昵称",
sender_account string comment "发送人账号",
sender_sex string comment "发送人性别",
sender_ip string comment "发送人ip地址",
sender_os string comment "发送人操作系统",
sender_phonetype string comment "发送人手机型号",
sender_network string comment "发送人网络类型",
sender_gps string comment "发送人的gps定位",
receiver_name string comment "接收人呢称",
receiver_ip string comment "接收人ip",
receiver_account string comment "接收人账号",
receiver_os string comment "接收人操作系统",
receiver_phonetype string comment"接收人手机型号",
receiver_network string comment "接收人网络类型",
receiver_gps string comment"接收人的gps定位",
receiver_sex string comment"接收人性别",
msg_type string comment"消息类型",
distance string comment"双方距离",
message string comment"消息内容",
msg_day string comment"消息日期(日)",
msg_hour string comment"消息时间(小时)",
sender_lng double comment"经度",
sender_lat double comment"纬度"
);
开始清洗
insert overwrite table myhive.dgy_30w_etl
select *,
to_date(msg_time) as msg_day,
hour(msg_time) as msg_hour,
split(sender_gps,',')[0] as sender_lng,
split(sender_gps,',')[1] as sender_lat
from myhive. dgy_30w
where length(sender_gps)>0;
运行成功,查询
5. 指标
统计今日消息总量
create table if not exists myhive.tb_rs_total_msg_cnt
comment"每日消息总量" as
select msg_day,count(*) as total_msg_cnt
from myhive.dgy_30w_etl
group by msg_day;
统计每小时消息量、发送和接收用户数
create table if not exists myhive.tb_rs_hour_msg_cnt
comment"每小时消息量趋势" as
select msg_hour,
count(*)as total_msg_cnt,
count(distinct sender_account)as sender_user_cnt,
count(distinct receiver_account)as receiver_user_cnt
from myhive.dgy_30w_etl group by msg_hour;
统计今日各地区发送消息总量
create table if not exists myhive.tb_rs_loc_cnt
comment"今日各地区发送消息总量"as
select
msg_day,sender_lng,sender_lat,sender_gps,
count(*)as total_msg_cnt from myhive.dgy_30w_etl
group by msg_day,sender_lng,sender_lat,sender_gps;
统计今日发送和接收用户人数
create table if not exists myhive.tb_rs_user_cnt
comment"今日发送消息人数、接收消息人数"as
select msg_day,
count(distinct sender_account)as sender_user_cnt,
count(distinct receiver_account)as receiver_user_cnt
from myhive.dgy_30w_etl
group by msg_day;
统计发送消息条数最多的top10用户
create table if not exists myhive.tb_rs_s_user_top10
comment"发送消息条数最多的top10用户"as
select sender_name as username,
count(*)as sender_msg_cnt
from myhive.dgy_30w_etl
group by sender_name
order by sender_msg_cnt desc
limit 10;
统计接收消息条数最多的top10用户
create table if not exists myhive.tb_rs_r_user_top10
comment"接收消息条数最多的top10用户" as
select receiver_name as username,
count(*)as receiver_msg_cnt
from myhive.dgy_30w_etl
group by receiver_name
order by receiver_msg_cnt desc
limit 10;
统计发送人的手机型号分布情况
create table if not exists myhive.tb_rs_sender_phone
comment"发送人的手机型号分布"as
select sender_phonetype,
count(sender_account)as cnt
from myhive.dgy_30w_etl
group by sender_phonetype;
统计发送人的手机操作系统分布
create table if not exists myhive.tb_rs_sender_os
comment"发送人的手机操作系统分布"as
select sender_os,
count(sender_account)as cnt
from myhive.dgy_30w_etl
group by sender_os;
进入myhive数据库,查看创建的十个表
use myhive;
show tables;
6. 进入fine bi数据中心
启动服务器
进入finebi
新建数据集,把数据库表导入finbi中
更新数据
新建分析主题
选择数据表
底栏选择组件,对相应表选择合适的图表,添加仪表板
在组件中给每个表选择合适的图例,适当调整样式
最终展示
发表评论