文章目录
使用tensorflow完成逻辑回归
tensorflow是一种开源的机器学习框架,由google brain团队于2015年开发。它被广泛应用于图像和语音识别、自然语言处理、推荐系统等领域。
tensorflow的核心是用于计算的数据流图。在数据流图中,节点表示数学操作,边表示张量(多维数组)。将操作和数据组合在一起的数据流图可以使 tensorflow 对复杂的数学模型进行优化,同时支持分布式计算。
tensorflow提供了python,c++,java,go等多种编程语言的接口,让开发者可以更便捷地使用tensorflow构建和训练深度学习模型。此外,tensorflow还具有丰富的工具和库,包括tensorboard可视化工具、tensorflow serving用于生产环境的模型服务、keras高层封装api等。
tensorflow已经发展出了许多优秀的模型,如卷积神经网络、循环神经网络、生成对抗网络等。这些模型已经在许多领域取得了优秀的成果,如图像识别、语音识别、自然语言处理等。
除了开源的tensorflow,google还推出了基于tensorflow的云端机器学习平台google cloud ml,为用户提供了更便捷的训练和部署机器学习模型的服务。
解决分类问题里最普遍的baseline model就是逻辑回归,简单同时可解释性好,使得它大受欢迎,我们来用tensorflow完成这个模型的搭建。
1. 环境设定
import os
os.environ['tf_cpp_min_log_level']='2'
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
2. 数据读取
#使用tensorflow自带的工具加载mnist手写数字集合
mnist = input_data.read_data_sets('./data/mnist', one_hot=true)
extracting ./data/mnist/train-images-idx3-ubyte.gz
extracting ./data/mnist/train-labels-idx1-ubyte.gz
extracting ./data/mnist/t10k-images-idx3-ubyte.gz
extracting ./data/mnist/t10k-labels-idx1-ubyte.gz
#查看一下数据维度
mnist.train.images.shape
(55000, 784)
#查看target维度
mnist.train.labels.shape
(55000, 10)
3. 准备好placeholder
batch_size = 128
x = tf.placeholder(tf.float32, [batch_size, 784], name='x_placeholder')
y = tf.placeholder(tf.int32, [batch_size, 10], name='y_placeholder')
4. 准备好参数/权重
w = tf.variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights')
b = tf.variable(tf.zeros([1, 10]), name="bias")
logits = tf.matmul(x, w) + b
5. 计算多分类softmax的loss function
# 求交叉熵损失
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y, name='loss')
# 求平均
loss = tf.reduce_mean(entropy)
6. 准备好optimizer
这里的最优化用的是随机梯度下降,我们可以选择adamoptimizer这样的优化器
learning_rate = 0.01
optimizer = tf.train.adamoptimizer(learning_rate).minimize(loss)
7. 在session里执行graph里定义的运算
#迭代总轮次
n_epochs = 30
with tf.session() as sess:
# 在tensorboard里可以看到图的结构
writer = tf.summary.filewriter('../graphs/logistic_reg', sess.graph)
start_time = time.time()
sess.run(tf.global_variables_initializer())
n_batches = int(mnist.train.num_examples/batch_size)
for i in range(n_epochs): # 迭代这么多轮
total_loss = 0
for _ in range(n_batches):
x_batch, y_batch = mnist.train.next_batch(batch_size)
_, loss_batch = sess.run([optimizer, loss], feed_dict={x: x_batch, y:y_batch})
total_loss += loss_batch
print('average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
print('total time: {0} seconds'.format(time.time() - start_time))
print('optimization finished!')
# 测试模型
preds = tf.nn.softmax(logits)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(y, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
n_batches = int(mnist.test.num_examples/batch_size)
total_correct_preds = 0
for i in range(n_batches):
x_batch, y_batch = mnist.test.next_batch(batch_size)
accuracy_batch = sess.run([accuracy], feed_dict={x: x_batch, y:y_batch})
total_correct_preds += accuracy_batch[0]
print('accuracy {0}'.format(total_correct_preds/mnist.test.num_examples))
writer.close()
average loss epoch 0: 0.36748782022571785
average loss epoch 1: 0.2978815356126198
average loss epoch 2: 0.27840628396797845
average loss epoch 3: 0.2783186247437706
average loss epoch 4: 0.2783641471138923
average loss epoch 5: 0.2750668214473413
average loss epoch 6: 0.2687560408126502
average loss epoch 7: 0.2713795114126239
average loss epoch 8: 0.2657588795522154
average loss epoch 9: 0.26322007090686916
average loss epoch 10: 0.26289192279735646
average loss epoch 11: 0.26248606019989873
average loss epoch 12: 0.2604622903056356
average loss epoch 13: 0.26015280702939403
average loss epoch 14: 0.2581879366319496
average loss epoch 15: 0.2590309207117085
average loss epoch 16: 0.2630510463581219
average loss epoch 17: 0.25501730025578767
average loss epoch 18: 0.2547102673000945
average loss epoch 19: 0.258298404375851
average loss epoch 20: 0.2549241428330784
average loss epoch 21: 0.2546788509283866
average loss epoch 22: 0.259556887067837
average loss epoch 23: 0.25428259843365575
average loss epoch 24: 0.25442713139565676
average loss epoch 25: 0.2553852511383159
average loss epoch 26: 0.2503043229415978
average loss epoch 27: 0.25468004046828596
average loss epoch 28: 0.2552785321479633
average loss epoch 29: 0.2506257003663859
total time: 28.603315353393555 seconds
optimization finished!
accuracy 0.9187
附:系列文章
序号 | 文章目录 | 直达链接 |
---|---|---|
1 | 波士顿房价预测 | |
2 | 鸢尾花数据集分析 | |
3 | 特征处理 | |
4 | 交叉验证 | |
5 | 构造神经网络示例 | |
6 | 使用tensorflow完成线性回归 | |
7 | 使用tensorflow完成逻辑回归 | |
8 | tensorboard案例 | |
9 | 使用keras完成线性回归 | |
10 | 使用keras完成逻辑回归 | |
11 | 使用keras预训练模型完成猫狗识别 | |
12 | 使用pytorch训练模型 | |
13 | 使用dropout抑制过拟合 | |
14 | 使用cnn完成mnist手写体识别(tensorflow) | |
15 | 使用cnn完成mnist手写体识别(keras) | |
16 | 使用cnn完成mnist手写体识别(pytorch) | |
17 | 使用gan生成手写数字样本 | |
18 | 自然语言处理 |
发表评论