当前位置: 代码网 > 科技>人工智能>机器学习 > 【深度学习】YOLOv8:别再pip install ultralytics了

【深度学习】YOLOv8:别再pip install ultralytics了

2024年07月31日 机器学习 我要评论
【深度学习】YOLOv8:别再pip install ultralytics了,解决keyerror:“CBAM”等等keyerror的问题。

🔥博客主页: a_showy
🎥系列专栏:         

问题

比如有些朋友会想加一个cbam注意力机制,或者是改一下conv,发现加上去以后,keyerror:“cbam”等等keyerror的问题。

解决

比较好用的解决办法就是 如果你以前已经装了ultralytics了,直接

pip uninstall ultralytics

requirements.txt

然后根据我提供的两个文件,第一个是requirements.txt,里面是我们需要跑代码的版本要求,注意文件名要和我给的一模一样

#pip install -r requirements.txt
# ultralytics requirements
# usage: pip install -r requirements.txt

# base ----------------------------------------
hydra-core>=1.2.0
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
pillow>=7.1.2
pyyaml>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0

# logging -------------------------------------
tensorboard>=2.4.1
# clearml
# comet

# plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# export --------------------------------------
# coremltools>=6.0  # coreml export
# onnx>=1.12.0  # onnx export
# onnx-simplifier>=0.4.1  # onnx simplifier
# nvidia-pyindex  # tensorrt export
# nvidia-tensorrt  # tensorrt export
# scikit-learn==0.19.2  # coreml quantization
# tensorflow>=2.4.1  # tf exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0  # tf.js export
# openvino-dev  # openvino export

# extras --------------------------------------
ipython  # interactive notebook
psutil  # system utilization
thop>=0.1.1  # flops computation
# albumentations>=1.0.3
# pycocotools>=2.0.6  # coco map
# roboflow

# hub -----------------------------------------
gitpython>=3.1.24

setup.py

这个是一个脚本文件,直接在根目录创建复制进去就行

# ultralytics yolo 🚀, gpl-3.0 license

import re
from pathlib import path

import pkg_resources as pkg
from setuptools import find_packages, setup

# settings
file = path(__file__).resolve()
root = file.parent  # root directory
readme = (root / "readme.md").read_text(encoding="utf-8")
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements((root / 'requirements.txt').read_text())]


def get_version():
    file = root / 'ultralytics/__init__.py'
    return re.search(r'^__version__ = [\'"]([^\'"]*)[\'"]', file.read_text(), re.m)[1]


setup(
    name="ultralytics",  # name of pypi package
    version=get_version(),  # version of pypi package
    python_requires=">=3.7.0",
    license='gpl-3.0',
    description='ultralytics yolov8 and hub',
    long_description=readme,
    long_description_content_type="text/markdown",
    url="https://github.com/ultralytics/ultralytics",
    project_urls={
        'bug reports': 'https://github.com/ultralytics/ultralytics/issues',
        'funding': 'https://ultralytics.com',
        'source': 'https://github.com/ultralytics/ultralytics',},
    author="ultralytics",
    author_email='hello@ultralytics.com',
    packages=find_packages(),  # required
    include_package_data=true,
    install_requires=requirements,
    extras_require={
        'dev':
        ['check-manifest', 'pytest', 'pytest-cov', 'coverage', 'mkdocs', 'mkdocstrings[python]', 'mkdocs-material'],},
    classifiers=[
        "intended audience :: developers", "intended audience :: science/research",
        "license :: osi approved :: gnu general public license v3 (gplv3)", "programming language :: python :: 3",
        "programming language :: python :: 3.7", "programming language :: python :: 3.8",
        "programming language :: python :: 3.9", "programming language :: python :: 3.10",
        "topic :: software development", "topic :: scientific/engineering",
        "topic :: scientific/engineering :: artificial intelligence",
        "topic :: scientific/engineering :: image recognition", "operating system :: posix :: linux",
        "operating system :: macos", "operating system :: microsoft :: windows"],
    keywords="machine-learning, deep-learning, vision, ml, dl, ai, yolo, yolov3, yolov5, yolov8, hub, ultralytics",
    entry_points={
        'console_scripts': ['yolo = ultralytics.yolo.cli:cli', 'ultralytics = ultralytics.yolo.cli:cli'],})

终端执行命令

python setup.py install

结束以后输入yolo,显示如下成功

anaconda prompt执行命令

 然后打开anaconda prompt,进入你配置的环境,看一下安装列表

conda activate ***
pip list

去torch官网下载自己合适的cuda版本

pip list以后发现torchvision版本不对应,我这个是2.22版本+cu118 去官网查一下对应版本,先把老版本卸载,再装新的,大概2.7g左右

pip uninstall torchvision
pip install torchvision==0.17.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

三件套安装成功且版本对应

直接回去可以改框架跑自己的数据集了 

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com