1 动态规划概述
动态规划(dynamic programming,简称dp)是一种解决多阶段决策问题的数学优化方法。它将原问题分解成若干个子问题,通过解决子问题只需解决一次并将结果保存下来,从而避免了重复计算,提高了算法效率。
通俗来讲,动态规划算法是解决一类具有重叠子问题和最优子结构性质的问题的有效方法。其基本原理是将大问题分解为小问题,通过保存中间结果来避免重复计算,从而提高算法的效率。
动态规划主要包括两个要素:最优子结构和重叠子问题。
2 基本概念
-
最优子结构(optimal substructure): 问题的最优解可以由其子问题的最优解递归地构建而成。
-
重叠子问题(overlapping subproblems): 问题可以被分解成若干个相同的子问题,这些子问题会被反复解决。
-
状态转移方程(state transition equation): 用于描述问题的状态和状态之间的关系,通过状态的转移得到最终问题的解。
3 动态规划算法步骤
4 应用
动态规划广泛应用于解决一些优化问题,如最短路径问题、最长公共子序列、背包问题等。以下是一些常见的应用场景:
详解与示例:
让我们以一个简单的问题为例,来详细解释动态规划的应用。
示例1: 假设有一个数组 nums
,求解其连续子数组的最大和
动态规划解法:
def max_subarray_sum(nums):
n = len(nums)
dp = [0] * n
dp[0] = nums[0]
for i in range(1, n):
dp[i] = max(dp[i-1] + nums[i], nums[i])
return max(dp)
# 示例
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
result = max_subarray_sum(nums)
print(result) # 输出 6,对应子数组 [4, -1, 2, 1]
示例2:求解斐波那契数列
def fibonacci(n):
if n <= 1:
return n
dp = [0] * (n + 1)
dp[1] = 1
for i in range(2, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
在上述例子中,以求解斐波那契数列为例,简要说明动态规划算法的应用:我们定义了一个状态数组dp来存储中间结果,dp[i]表示第i个斐波那契数。通过循环遍历,我们利用递推关系dp[i] = dp[i - 1] + dp[i - 2]来计算每个斐波那契数,最终得到结果。 动态规划算法广泛应用于各个领域,如路径规划、图像处理、自然语言处理等。其思想核心是将问题划分为更小的子问题,并通过保存中间计算结果来提高计算效率和减少重复计算。
5 常用动态规划算法
动态规划是一种通过将原问题分解为相互重叠的子问题,并通过已解决的子问题的解来求解原问题的方法。动态规划算法通常用于优化问题,其中需要做出一系列决策,每个决策都会影响到后续的决策。以下是一些常见的动态规划算法:
这只是动态规划应用的一小部分,实际上,动态规划可以用于解决各种优化问题。每个动态规划问题都有其独特的状态定义、状态转移方程和初始条件。通常,动态规划问题可以分为自顶向下(递归加记忆化搜索)和自底向上(迭代)两种解法。
发表评论