当前位置: 代码网 > it编程>软件设计>算法 > 第十三章 DFS与BFS(保姆级教学!!超级详细的图示!!)

第十三章 DFS与BFS(保姆级教学!!超级详细的图示!!)

2024年07月28日 算法 我要评论
用画图和超详细地注释帮助大家秒懂DFS和BFS!!!!保姆级教学!!!解决你的痛点!!!

一、深度优先搜索

1、什么是dfs?

dfs即depth first search,深度优先搜索。简单地理解为一条路走到黑。那么什么叫一条路走到黑呢?假设我们想在如下的地图中走出一条最长的路,那么最粗暴的方式就是枚举出每一种情况。
在这里插入图片描述
因此,按照dfs一条路走到黑的思想,我们将会出现如下路线:
在这里插入图片描述
先走a,然后到b,到了b有三种情况,意味着这条路还没走完,那我就接着走,从b走到e,走到e之后没路了。那我就回溯到b,为什么呢?
因为我原本走到b的时候就有三种情况,但是刚刚只走了一种情况,因此我要回到b再去尝试第二条路,于是我们就从e回到b,然后从b去f。到了f,又没路了,那我们就回到b走第三种情况,从b到g。这样我们就走完了从a->b的三种情况。又因为在a处其实还有三种情况,因此我们走完b的三种情况后,回到a,去走除了从a->b的第二种情况,即a->c。由此以往。

简而言之,就是我们一头扎进去,撞了南墙,我就退一步,但是决不放弃,在原基础上做出局部的改变去尝试第二条路,直到所有的情况我都试了,实在没有其他情况了,那我就回到a,从头出发,再做选择,再一头扎进去,直到成功。

2、dfs代码模板

(1)问题:

在这里插入图片描述

(2)分析:

在这里插入图片描述
我们将其各种选择,继续画成一棵树:
在这里插入图片描述
这张图就清晰很多了,因此想要用dfs,我们首先要有逻辑地画出一张地图,有了地图才能去搜。

(3)模板:

#include<iostream>
using namespace std;
const int n=10;
int ans[n];
bool mark[n];
int n;
void dfs(int u)
{
    //"回头"的条件
    if(u==n)
    {
        for(int i=0;i<n;i++)cout<<ans[i]<<" ";
        puts("");
        return;
    }
    
    for(int i=1;i<=n;i++)
    {
        if(mark[i]==false)
        {
            mark[i]=true;
            ans[u]=i;
            dfs(u+1);
            //复原
            mark[i]=false;
            ans[u]=0;
        }
    }
}

int main()
{
    cin>>n;
    dfs(0);
    return 0;
}

3、dfs代码分析

在这里插入图片描述
当然这个过程很抽象,那么我就帮大家模拟一下函数进行的过程吧^ _ ^(这里只模拟一部分,不理解的读者可自己模拟完。)
在这里插入图片描述

二、广度优先搜索

1、什么是bfs?

bfs即breadth first search,即广度优先搜索。如果说dfs是一条路走到黑的话,bfs就完全相反了。bfs会在每个岔路口都各向前走一步。因此其遍历顺序如下图所示:

在这里插入图片描述
我们发现每次搜索的位置都是距离当前节点最近的点。因此,bfs是具有最短路的性质的。为什么呢?这就类似于我们后面要学习的贪心策略。这里简单地介绍一下贪心,假设我们可以做出12次选择。我们想得到一个最好的方案。那么我们可以在第一次选择的时候,做出当前最好的选择,在第二次选择的时候,再做出那时候最好的选择,由此积累。当我们在每次的选择面前,都做到了当前最好的选择,那么我们就可以由局部最优推出整体最优。

这里也是类似的,我们可以在每次出发的时候,走到离自己最近的点,由此我们每次都保证走最近的,那从局部最近推整体最近,必有一条路是整体最近的。所以我们可以利用bfs做最短路问题。

2、bfs代码模板

(1)问题:

在这里插入图片描述
本题求的是最短路,因此我们可以利用bfs从当前节点出发,每次都向周围拓展。

(2)代码:

#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int n=110;
typedef pair<int,int> pii;
int map[n][n],mark[n][n];
int dx[4]={-1,0,1,0},dy[4]={0,1,0,-1},n,m,ans;
void bfs()
{
    memset(mark,-1,sizeof mark);
    queue<pii>q;
    q.push({0,0});
    mark[0][0]=0;
    while(!q.empty())
    {
        pii top=q.front();
        for(int i=0;i<4;i++)
        {
            int nex=top.first+dx[i],ney=top.second+dy[i];
            if(nex>=0&&nex<n&&ney>=0&&ney<m&&mark[nex][ney]==-1&&map[nex][ney]==0)
            {
                mark[nex][ney]=mark[top.first][top.second]+1;
                q.push({nex,ney});
            }
        }
        q.pop();
    }
    cout<<mark[n-1][m-1];
}
int main()
{
    cin>>n>>m;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<m;j++)
        {
            scanf("%d",&map[i][j]);
        }
    }
    bfs();
}

3、bfs代码分析

在这里插入图片描述

(1)问题1:为什么要用队列?

bfs要保证的第一件事就是我们需要先走最近的,因此,队列的作用就是基于此的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)问题2:方向向量怎么用?

在这里插入图片描述
我们将上面的方向变化可以写成如下的数组:
在这里插入图片描述

(3)问题3:为什么最后的输出是最短路?

我们每个点都是同时向外拓展一步,并且只拓展一次。那么我们将其速度看作1步/次。每个点都向外探索一次。那么此时我们的次数可以类比为时间,由此每条路的速度和时间都是一样的,因此每条路的路程都是一样的。

而各个点都是从起点开始扩散的。我们看下面的例子:

在这里插入图片描述
某时刻,绿色线到达了b点,此时各个路线的长度都是l,那么接下来再走的话,蓝色线的路程和黄色线的路程只会更长,因此其再到达b点的时候,必不如绿色线近因此,第一次到达某个点的路线,就是最短的路线

由于mark数组中的点,踩过一次后,就不许再经过了。于是,我们惊奇地发现,每个点记录的路程都是从起点到该点的最短路!!!

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com