一、什么是统计信息
oracle数据库里的统计信息是如下的一组数据:他们存储在数据字典里,且从多个维度描述了oracle数据库数据对象的详细信息。
oracle数据库里的统计信息主要分为以下6种情况:
(1)表的统计信息。
(2)列的统计信息。
(3)索引的统计信息。
(4)系统统计信息。
(5)数据字典统计信息。
(6)内部对象统计信息。
二、oracle收集和查看统计信息的方法
oracle数据库收集统计信息一般有以下2种方法:
(1)analyze命令。
(2)dbms_stats包。
针对以上6种统计信息,其中“表的统计信息”,“索引统计信息”,“列统计信息”,“数据字典统计信息”使用analyze或dbms_stats包收集均可以,但是“系统统计信息”和“内部对象统计信息”必须要dbms_stats包来收集才可以。
1、使用analyze命令收集统计信息
从oralce7开始,analyze命令就用来收集表、索引和列的统计信息。从oracle10g开始,创建索引后oracle会自动为您收集目标索引统计信息。analyze命令收集统计信息不会抹掉之间analyze结果。
创建测试表:
sql>create table t1 as select * from dba_objects; sql>create index idx_t1 on t1(object_id);
(1)analyze索引统计信息:
sql>analyze index idx_t1 delete statistics;
(2)对表收集统计信息,并且以估算模式,采样比为15%:
sql>analyze table t1 estimate statistics sample 15 percent for table;
(3)对表收集统计信息,以统计模式:
sql>analyze table t1 compute statistics for table;
(4)对列收集统计信息,以计算模式:
sql>analyze table t1 compute statistics for columns object_name,object_id;
(5)以计算模式对表和列同时收集统计信息:
sql>analyze table t1 compute statistics for t1 for columns object_name,object_id;
(6)以计算模式对索引收集统计信息:
sql>analyze index idx_t1 compute statistics;
(7)删除表、表上的索引、表的所有列的统计信息:
sql>analyze table t1 delete statistics;
(8)以计算模式,同时收集表、表上的列、表上的索引的统计信息:
sql>analyze table t1 compute statistics;
2、使用dbms_stats包收集统计信息
从oracle 8.1.5开始,dbms_stats包就被广泛用于统计信息的收集,用dbms_stats包收集统计信息也是oracle官方推荐的方式。在收集cbo所需要的统计信息方面,可以简单的将dbms_stats包理解成是analyze命令的增强版。
dbms_stats包最常见的4个存储过程:
(1)dbms_stats.gather_table_stats:用于收集目标表,目标表上列及目标表上索引的统计信息。
(2)dbms_stats.gather_index_stats:用于收集指定索引的统计信息。
(3)dbms_stats.gather_schema_stats:用于收集schema下所有对象的统计信息。
(4)dbms_stats.gather_database_stats:用于收集全库统计对象的统计信息。
以下是dbms_stats包的具体用法:
(1)对表收集统计信息,并且以估算模式,采样比为15%:
sql>exec dbms_stats.gather_table_stats(ownname=>'scott',tabname=>'t1',estimate_percent=>15,method_opt=>'for table',cascade=>false);
注意:method_opt参数指定了for table不是在所有版本oracle下都是好用的。
(2)对表收集统计信息,以计算模式:
sql>exec dbms_stats.gather_table_stats(ownname=>'scott',tabname=>'t1',estimate_percent=>100,method_opt=>'for table',cascade=>false);
或
sql>exec dbms_stats.gather_table_stats(ownname=>'scott',tabname=>'t1',estimate_percent=>null,method_opt=>'for table',cascade=>false);
(3)对列收集统计信息,以计算模式:
sql>exec dbms_stats.gather_table_stats(ownname=>'scott',tabname=>'t1',estimate_percent=>100,method_opt=>'for all culumns size 1 object_name object_id',cascade=>false);
注意:以上方法收集了列objec_name、object_id的统计信息,同时也会收集表的统计信息。
(4)以计算模式对索引收集统计信息:
sql>exec dbms_stats.gather_index_stats(ownname=>'scott',indname=>'index_t1',estimate_percent=>100);
(5)删除表、表上的索引、表的所有列的统计信息:
sql>exec dbms_stats.delete_table_stats(ownname=>'scott',tabname=>'t1');
(6)以计算模式,同时收集表、表上的列、表上的索引的统计信息:
sql>exec dbms_stats.gather_table_stats(ownname=>'scott',tabname=>'t1',estimate_percent=>15 ,cascade=>true);
3、analyze和dbms_stats的区别
(1)analyze命令不能正确的收集分区表的统计信息,而dbms_stats包缺可以。
(2)analyze命令不能以并行收集统计信息,而dbms_stats包缺可以。
sql>exec dbms_stats.gather_table_stats(ownname=>'scott',tabname=>'t1',estimate_percent=>100, cascade=>false,degree=>4);
(3)dbms_stats包只能收集与cbo相关的统计信息,而与cbo无关的额外信息,比如行迁移/行链接的数量(chain_cnt),校验表和索引的结构信息等,dbms_stats包就无能为力了,而analyze命令是可以用来分析和收集上述额外信息。比如:
sql>analyze table xxx list chained rows into yyy; --用来分析和收集行迁移/行链接的数量。 sql>analyze index xxx validate structure; --用来分析索引结构。
4、查看统计信息
oracle里的统计信息存储在数据字典表中,可以通过脚本来查询对象的统计信息。
sosi.sh脚本如下(可以查看表、索引、列的统计信息):
set echo off set scan on set lines 150 set pages 66 set verify off set feedback off set termout off column uservar new_value table_owner noprint select user uservar from dual; set termout on column table_name heading "tables owned by &table_owner" format a30 select table_name from dba_tables where owner=upper('&table_owner') order by 1 / undefine table_name undefine owner prompt accept owner prompt 'please enter name of table owner (null = &table_owner): ' accept table_name prompt 'please enter table name to show statistics for: ' column table_name heading "table|name" format a15 column partition_name heading "partition|name" format a15 column subpartition_name heading "subpartition|name" format a15 column num_rows heading "number|of rows" format 9,999,999,990 column blocks heading "blocks" format 999,990 column empty_blocks heading "empty|blocks" format 999,999,990 column avg_space heading "average|space" format 9,990 column chain_cnt heading "chain|count" format 999,990 column avg_row_len heading "average|row len" format 990 column column_name heading "column|name" format a25 column nullable heading null|able format a4 column num_distinct heading "distinct|values" format 999,999,990 column num_nulls heading "number|nulls" format 9,999,990 column num_buckets heading "number|buckets" format 990 column density heading "density" format 990 column index_name heading "index|name" format a15 column uniqueness heading "unique" format a9 column blev heading "b|tree|level" format 90 column leaf_blocks heading "leaf|blks" format 990 column distinct_keys heading "distinct|keys" format 9,999,999,990 column avg_leaf_blocks_per_key heading "average|leaf blocks|per key" format 99,990 column avg_data_blocks_per_key heading "average|data blocks|per key" format 99,990 column clustering_factor heading "cluster|factor" format 999,999,990 column column_position heading "col|pos" format 990 column col heading "column|details" format a24 column column_length heading "col|len" format 9,990 column global_stats heading "global|stats" format a6 column user_stats heading "user|stats" format a6 column sample_size heading "sample|size" format 9,999,999,990 column to_char(t.last_analyzed,'mm-dd-yyyy') heading "date|mm-dd-yyyy" format a10 prompt prompt *********** prompt table level prompt *********** prompt select table_name, num_rows, blocks, empty_blocks, avg_space, chain_cnt, avg_row_len, global_stats, user_stats, sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_tables t where owner = upper(nvl('&&owner',user)) and table_name = upper('&&table_name') / select column_name, decode(t.data_type, 'number',t.data_type||'('|| decode(t.data_precision, null,t.data_length||')', t.data_precision||','||t.data_scale||')'), 'date',t.data_type, 'long',t.data_type, 'long raw',t.data_type, 'rowid',t.data_type, 'mlslabel',t.data_type, t.data_type||'('||t.data_length||')') ||' '|| decode(t.nullable, 'n','not null', 'n','not null', null) col, num_distinct, density, num_buckets, num_nulls, global_stats, user_stats, sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_tab_columns t where table_name = upper('&table_name') and owner = upper(nvl('&owner',user)) / select index_name, uniqueness, blevel blev, leaf_blocks, distinct_keys, num_rows, avg_leaf_blocks_per_key, avg_data_blocks_per_key, clustering_factor, global_stats, user_stats, sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_indexes t where table_name = upper('&table_name') and table_owner = upper(nvl('&owner',user)) / break on index_name select i.index_name, i.column_name, i.column_position, decode(t.data_type, 'number',t.data_type||'('|| decode(t.data_precision, null,t.data_length||')', t.data_precision||','||t.data_scale||')'), 'date',t.data_type, 'long',t.data_type, 'long raw',t.data_type, 'rowid',t.data_type, 'mlslabel',t.data_type, t.data_type||'('||t.data_length||')') ||' '|| decode(t.nullable, 'n','not null', 'n','not null', null) col from dba_ind_columns i, dba_tab_columns t where i.table_name = upper('&table_name') and owner = upper(nvl('&owner',user)) and i.table_name = t.table_name and i.column_name = t.column_name order by index_name,column_position / prompt prompt *************** prompt partition level prompt *************** select partition_name, num_rows, blocks, empty_blocks, avg_space, chain_cnt, avg_row_len, global_stats, user_stats, sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_tab_partitions t where table_owner = upper(nvl('&&owner',user)) and table_name = upper('&&table_name') order by partition_position / break on partition_name select partition_name, column_name, num_distinct, density, num_buckets, num_nulls, global_stats, user_stats, sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_part_col_statistics t where table_name = upper('&table_name') and owner = upper(nvl('&owner',user)) / break on partition_name select t.index_name, t.partition_name, t.blevel blev, t.leaf_blocks, t.distinct_keys, t.num_rows, t.avg_leaf_blocks_per_key, t.avg_data_blocks_per_key, t.clustering_factor, t.global_stats, t.user_stats, t.sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_ind_partitions t, dba_indexes i where i.table_name = upper('&table_name') and i.table_owner = upper(nvl('&owner',user)) and i.owner = t.index_owner and i.index_name=t.index_name / prompt prompt *************** prompt subpartition level prompt *************** select partition_name, subpartition_name, num_rows, blocks, empty_blocks, avg_space, chain_cnt, avg_row_len, global_stats, user_stats, sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_tab_subpartitions t where table_owner = upper(nvl('&&owner',user)) and table_name = upper('&&table_name') order by subpartition_position / break on partition_name select p.partition_name, t.subpartition_name, t.column_name, t.num_distinct, t.density, t.num_buckets, t.num_nulls, t.global_stats, t.user_stats, t.sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_subpart_col_statistics t, dba_tab_subpartitions p where t.table_name = upper('&table_name') and t.owner = upper(nvl('&owner',user)) and t.subpartition_name = p.subpartition_name and t.owner = p.table_owner and t.table_name=p.table_name / break on partition_name select t.index_name, t.partition_name, t.subpartition_name, t.blevel blev, t.leaf_blocks, t.distinct_keys, t.num_rows, t.avg_leaf_blocks_per_key, t.avg_data_blocks_per_key, t.clustering_factor, t.global_stats, t.user_stats, t.sample_size, to_char(t.last_analyzed,'mm-dd-yyyy') from dba_ind_subpartitions t, dba_indexes i where i.table_name = upper('&table_name') and i.table_owner = upper(nvl('&owner',user)) and i.owner = t.index_owner and i.index_name=t.index_name / clear breaks set echo on
附:查看表历史收集的统计信息情况
select b.owner, b.object_name table_name, to_char(a.analyzetime, 'yyyy-mm-dd hh24:mi:ss') last_analyzetime, to_char(a.savtime, 'yyyy-mm-dd hh24:mi:ss') curr_analyzetime, a.rowcnt from sys.wri$_optstat_tab_history a, dba_objects b where a.obj# = b.object_id and b.object_name ='zb_whole_orders_kafka_dispatch' and b.owner='zjopen' order by a.obj#, a.savtime;
总结
到此这篇关于oracle收集和查看统计信息的文章就介绍到这了,更多相关oracle统计信息内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!
发表评论