引言
在当今的软件开发领域,人工智能的集成已经成为提升应用功能和用户体验的重要手段。对于 java 开发者而言,spring ai 提供了一套强大且便捷的工具,使得在 java 项目中集成 ai 功能变得更加轻松。本文将深入探讨 java 使用 spring ai 的 10 个实用技巧,帮助开发者充分发挥 spring ai 的潜力,打造出更加智能、高效的应用程序。
技巧 1:使用 @enablespringai 注解快速启动
在 spring boot 应用中,快速启动 spring ai 的配置可以通过@enablespringai
注解轻松实现。这个注解会自动触发一系列 ai 相关的配置,极大地简化了我们的工作。
首先,在项目的依赖中引入 spring ai 相关的库。如果使用 maven,在pom.xml
文件中添加如下依赖:
<dependency> <groupid>org.springframework.ai</groupid> <artifactid>spring-ai-starter</artifactid> <version>1.0.0</version> </dependency> <dependency> <groupid>org.springframework.ai</groupid> <artifactid>spring-ai-deepseek</artifactid> <version>1.0.0</version> </dependency>
然后,在 spring boot 的主应用类上添加@enablespringai
注解:
@springbootapplication @enablespringai public class myspringaiapplication { public static void main(string[] args) { springapplication.run(myspringaiapplication.class, args); } }
通过上述简单操作,spring 会自动扫描并配置 ai 相关的 bean,我们无需手动编写大量繁琐的配置代码,即可快速开启 spring ai 之旅。
技巧 2:通过 aiclient 接口注入不同提供商的客户端
spring ai 的aiclient
接口是一个强大的抽象,它允许我们轻松地集成不同的 ai 服务提供商,如 deepseek 等。
在application.yml
中添加 deepseek 客户端的配置:
spring: ai: deepseek: api-key: your_deepseek_api_key base-url: https://api.deepseek.com/v1
然后,创建一个配置类来注入deepseekclient
:
@configuration public class aiclientconfig { @bean public deepseekclient deepseekclient(deepseekclientproperties properties) { return new deepseekclient(properties.getapikey()); } }
这样,在其他组件中,我们就可以通过依赖注入的方式使用deepseekclient
了:
@service public class myaiservice { private final deepseekclient deepseekclient; public myaiservice(deepseekclient deepseekclient) { this.deepseekclient = deepseekclient; } public string generatetext(string prompt) { // 使用deepseekclient进行文本生成 return deepseekclient.generate(prompt).getgeneratedtext(); } }
通过这种方式,我们可以根据项目需求轻松切换不同的 ai 服务提供商,而无需对业务逻辑进行大规模修改。
技巧 3:使用 prompttemplate 分离业务逻辑和提示词
在使用 ai 进行文本生成等任务时,提示词的管理至关重要。prompttemplate
允许我们将业务逻辑与提示词分离,提高代码的可维护性和复用性。
假设我们有一个简单的文本总结需求,定义一个提示词模板:
public class summaryservice { private static final string summary_template = "请总结以下内容:{text}"; public string summarizetext(string text) { prompttemplate prompttemplate = new prompttemplate(summary_template); // 使用模板生成具体的提示词 string prompt = prompttemplate.render("text", text); // 这里假设已经有一个aiclient实例用于生成文本 string summary = aiclient.generate(prompt).getgeneratedtext(); return summary; } }
在上述代码中,summary_template
定义了提示词的结构,{text}
是一个占位符。通过render
方法,我们将实际的文本内容填充到占位符中,生成最终的提示词。这样,当我们需要修改提示词的格式或逻辑时,只需在summary_template
中进行调整,而不会影响到业务逻辑代码。
技巧 4:实现 messageconverter 处理复杂数据格式
在实际应用中,我们可能需要处理各种复杂的数据格式,如 json、xml 等。spring ai 的messageconverter
接口可以帮助我们实现数据格式的转换,以便更好地与 ai 模型交互。
以 json 格式为例,我们定义一个自定义的messageconverter
来将 json 字符串转换为 ai 模型所需的message
对象:
@component public class jsonmessageconverter implements messageconverter { private final objectmapper objectmapper = new objectmapper(); @override public message tomessage(string json) { try { // 假设json结构中有一个"content"字段表示用户输入 jsoninput jsoninput = objectmapper.readvalue(json, jsoninput.class); return new usermessage(jsoninput.getcontent()); } catch (exception e) { throw new runtimeexception("failed to convert json to message", e); } } @override public string frommessage(message message) { try { jsonoutput jsonoutput = new jsonoutput(message.getcontent()); return objectmapper.writevalueasstring(jsonoutput); } catch (exception e) { throw new runtimeexception("failed to convert message to json", e); } } private static class jsoninput { private string content; public string getcontent() { return content; } public void setcontent(string content) { this.content = content; } } private static class jsonoutput { private string result; public jsonoutput(string result) { this.result = result; } public string getresult() { return result; } } }
在上述代码中,tomessage
方法将 json 字符串解析为usermessage
对象,frommessage
方法则将message
对象转换回 json 格式。这样,我们可以在与 ai 模型交互时,方便地处理 json 数据,确保数据格式的兼容性。
技巧 5:集成 spring security 保护 ai 接口
当我们将 ai 功能暴露为接口供外部使用时,安全保护是必不可少的。spring security 可以帮助我们轻松实现对 ai 接口的安全防护。
首先,添加 spring security 的依赖:
<dependency> <groupid>org.springframework.boot</groupid> <artifactid>spring-boot-starter-security</artifactid> </dependency>
然后,创建一个 spring security 配置类:
@configuration @enablewebsecurity public class securityconfig extends websecurityconfigureradapter { @override protected void configure(httpsecurity http) throws exception { http .csrf().disable() .sessionmanagement().sessioncreationpolicy(sessioncreationpolicy.stateless) .and() .authorizerequests() .antmatchers("/ai/**").authenticated() .anyrequest().permitall() .and() .addfilterbefore(new jwtauthenticationfilter(), usernamepasswordauthenticationfilter.class); } @bean public jwtauthenticationfilter jwtauthenticationfilter() throws exception { return new jwtauthenticationfilter(); } }
在上述配置中,我们禁用了 csrf 保护(因为在无状态的 api 场景中通常不需要),设置了会话创建策略为无状态,并且配置了对/ai/**
路径下的请求进行身份验证。jwtauthenticationfilter
是一个自定义的过滤器,用于处理 jwt 认证,具体实现如下:
public class jwtauthenticationfilter extends onceperrequestfilter { private static final string header_string = "authorization"; private static final string token_prefix = "bearer "; @override protected void dofilterinternal(httpservletrequest request, httpservletresponse response, filterchain filterchain) throws servletexception, ioexception { string header = request.getheader(header_string); if (header == null ||!header.startswith(token_prefix)) { filterchain.dofilter(request, response); return; } string token = header.replace(token_prefix, ""); claims claims = jwts.parser().setsigningkey("your_secret_key").parseclaimsjws(token).getbody(); string username = claims.getsubject(); list<string> roles = (list<string>) claims.get("roles"); list<simplegrantedauthority> authorities = roles.stream() .map(simplegrantedauthority::new) .collect(collectors.tolist()); usernamepasswordauthenticationtoken authenticationtoken = new usernamepasswordauthenticationtoken(username, null, authorities); securitycontextholder.getcontext().setauthentication(authenticationtoken); filterchain.dofilter(request, response); } }
通过上述配置和过滤器,我们实现了基于 jwt 的身份验证,确保只有经过授权的用户才能访问 ai 接口,保障了系统的安全性。
技巧 6:使用 aifunction 注解暴露 java 方法给 ai 模型
aifunction
注解是 spring ai 提供的一个强大功能,它允许我们将 java 方法暴露为 ai 模型可以调用的函数。这在很多场景下非常有用,比如让 ai 模型根据业务需求调用特定的 java 逻辑。
假设我们有一个计算商品折扣价格的 java 方法,我们可以使用aifunction
注解将其暴露:
@component public class discountservice { @aifunction( name = "calculatediscountprice", description = "计算商品的折扣价格,输入商品原价和折扣率,返回折扣后的价格" ) public double calculatediscountprice(double originalprice, double discountrate) { return originalprice * (1 - discountrate); } }
在上述代码中,@aifunction
注解指定了函数的名称和描述。这样,ai 模型在需要计算折扣价格时,就可以通过调用calculatediscountprice
函数来实现。
技巧 7:配置 aiclientproperties 调整连接超时和重试策略
为了优化 ai 客户端与服务提供商之间的交互性能,我们可以通过配置aiclientproperties
来调整连接超时和重试策略。
在application.yml
中添加如下配置:
spring: ai: deepseek: client: connection-timeout: 5000 read-timeout: 10000 max-retries: 3
上述配置中,spring.ai.deepseek.client.connection-timeout
设置了连接超时时间为 5 秒,spring.ai.deepseek.client.read-timeout
设置了读取超时时间为 10 秒,spring.ai.deepseek.client.max-retries
设置了最大重试次数为 3 次。
在代码中,我们可以通过注入deepseekclientproperties
来获取这些配置并应用到deepseekclient
中:
@configuration public class deepseekclientconfig { @bean public deepseekclient deepseekclient(deepseekclientproperties properties) { deepseekclient client = new deepseekclient(properties.getapikey()); client.setconnectiontimeout(properties.getconnectiontimeout()); client.setreadtimeout(properties.getreadtimeout()); client.setmaxretries(properties.getmaxretries()); return client; } }
通过合理配置连接超时和重试策略,可以提高 ai 客户端在网络不稳定等情况下的可靠性和性能。
技巧 8:使用 reactiveaiclient 实现非阻塞请求处理
在高并发的应用场景中,使用响应式编程模型可以显著提高系统的性能和资源利用率。spring ai 提供的reactiveaiclient
接口允许我们以非阻塞的方式处理 ai 请求。
假设我们有一个需要调用 ai 模型生成文本的服务,使用reactiveaiclient
可以这样实现:
@service public class reactiveaitextgenerationservice { private final reactivedeepseekclient reactivedeepseekclient; public reactiveaitextgenerationservice(reactivedeepseekclient reactivedeepseekclient) { this.reactivedeepseekclient = reactivedeepseekclient; } public mono<string> generatetext(string prompttext) { prompt prompt = new prompt(new usermessage(prompttext)); return reactivedeepseekclient.generate(prompt) .map(response -> response.getgeneratedtext()); } }
在上述代码中,generatetext
方法返回一个mono<string>
,表示一个异步的文本生成操作。通过这种方式,我们可以在不阻塞线程的情况下处理大量的 ai 请求,提高系统的吞吐量和响应速度。
技巧 9:通过 aimessagehistory 维护多轮对话上下文
在涉及多轮对话的场景中,如聊天机器人,维护对话上下文非常重要。spring ai 的aimessagehistory
可以帮助我们轻松实现这一点。
创建一个服务类来管理对话历史:
@service public class chatservice { private final aimessagehistory messagehistory; private final deepseekclient deepseekclient; public chatservice(deepseekclient deepseekclient, aimessagehistory messagehistory) { this.deepseekclient = deepseekclient; this.messagehistory = messagehistory; } public string chat(string userinput) { usermessage usermessage = new usermessage(userinput); messagehistory.addmessage(usermessage); string response = deepseekclient.generate(messagehistory.getmessages()).getgeneratedtext(); aimessage airesponse = new aimessage(response); messagehistory.addmessage(airesponse); return response; } }
在上述代码中,每次用户输入消息时,我们将其添加到messagehistory
中,然后使用messagehistory
中的所有消息与 ai 模型进行交互,获取 ai 的响应后,再将响应添加到messagehistory
中。这样,messagehistory
始终维护着完整的对话上下文,使得 ai 模型能够根据之前的对话内容进行更准确的回复。
技巧 10:自定义 airesponsehandler 处理大文本的分段生成
在处理大文本生成时,一次性获取全部文本可能会导致内存问题或长时间等待。spring ai 允许我们自定义airesponsehandler
来处理流式响应,实现大文本的分段生成。
首先,定义一个自定义的airesponsehandler
:
public class customairesponsehandler implements airesponsehandler { private final list<string> partialtexts = new arraylist<>(); @override public void handleresponse(airesponse response) { string partialtext = response.getgeneratedtext(); partialtexts.add(partialtext); system.out.println("接收到分段文本: " + partialtext); } public string getfulltext() { return string.join("", partialtexts); } }
在实际使用时,我们可以将自定义的airesponsehandler
与reactiveaiclient
结合,实现响应式的流式文本生成处理:
@service public class streamingtextgenerationservice { private final reactivedeepseekclient reactivedeepseekclient; public streamingtextgenerationservice(reactivedeepseekclient reactivedeepseekclient) { this.reactivedeepseekclient = reactivedeepseekclient; } public mono<void> generatestreamingtext(string prompttext, customairesponsehandler handler) { prompt prompt = new prompt(new usermessage(prompttext)); return reactivedeepseekclient.generatestreaming(prompt) .doonnext(handler::handleresponse) .then(); } }
在generatestreamingtext
方法中,reactivedeepseekclient.generatestreaming
发起流式文本生成请求,doonnext
操作会在每次接收到分段响应时调用customairesponsehandler
的handleresponse
方法,最后通过then
操作返回一个表示操作完成的mono<void>
。
通过这种方式,我们可以有效处理大文本生成场景,避免一次性加载大量文本导致的内存压力,同时还能在文本生成过程中及时展示内容,提升用户体验。
总结
本文详细介绍了 java 使用 spring ai 的 10 个实用技巧,从项目初始化到复杂场景优化均有覆盖。这些技巧涵盖了 spring ai 应用开发的全流程,无论是初涉 ai 开发的新手,还是寻求技术突破的资深开发者,都能从中获取实用的技术方案。通过合理运用这些技巧,java 开发者可以更高效地将 ai 能力融入项目,打造出功能强大、体验出色的智能应用
以上就是java使用spring ai的10个实用技巧分享的详细内容,更多关于java使用spring ai的资料请关注代码网其它相关文章!
发表评论