当前位置: 代码网 > it编程>前端脚本>Python > 使用Python实现矢量路径的压缩、解压与可视化

使用Python实现矢量路径的压缩、解压与可视化

2025年04月27日 Python 我要评论
引言在图形设计和web开发中,矢量路径数据的高效存储与传输至关重要。本文将通过一个python示例,展示如何将复杂的矢量路径命令序列压缩为json格式,再将其解压还原,并通过matplotlib进行可

引言

在图形设计和web开发中,矢量路径数据的高效存储与传输至关重要。本文将通过一个python示例,展示如何将复杂的矢量路径命令序列压缩为json格式,再将其解压还原,并通过matplotlib进行可视化。这一过程可应用于字体设计、矢量图形编辑或web应用中的路径数据传输。

核心功能概述

1. 路径命令解析

  • 输入:包含movetolinetoqcurveto(二次贝塞尔曲线)、closepath命令的路径数据。
  • 输出:转换为matplotlib.path.path对象,用于绘制矢量图形。

2. 路径数据压缩

  • 将路径命令序列转换为紧凑的json格式,便于存储或传输。
  • 示例:moveto((100, 177)) → {"m":[100,177]}

3. 路径数据解压

  • 将json格式还原为原始路径命令序列,确保数据完整性。

4. 可视化

  • 使用matplotlib渲染路径,验证压缩/解压过程的正确性。

代码实现详解

1. 路径命令解析(parse_commands函数)

def parse_commands(data):
    codes = []
    vertices = []
    for cmd, params in data:
        if cmd == 'moveto':
            codes.append(path.moveto)
            vertices.append(params[0])
        elif cmd == 'lineto':
            codes.append(path.lineto)
            vertices.append(params[0])
        elif cmd == 'qcurveto':
            # 处理二次贝塞尔曲线(每段需要两个控制点和一个终点)
            for i in range(0, len(params), 2):
                control = params[i]
                end = params[i+1] if i+1 < len(params) else params[-1]
                codes.extend([path.curve3, path.curve3])
                vertices.extend([control, end])
        elif cmd == 'closepath':
            codes.append(path.closepoly)
            vertices.append(vertices[0])  # 闭合路径回到起点
    return codes, vertices

关键点:

  • 二次贝塞尔曲线qcurveto命令需两个控制点和一个终点,通过path.curve3实现。
  • 闭合路径closepoly命令自动连接最后一个点到起点。

2. 路径数据压缩(compress_path_to_json函数)

def compress_path_to_json(data):
    command_map = {'moveto': 'm', 'lineto': 'l', 'qcurveto': 'q', 'closepath': 'z'}
    compressed = []
    for cmd, params in data:
        cmd_short = command_map[cmd]
        points = []
        if cmd == 'closepath':
            compressed.append({cmd_short: []})
        else:
            # 将坐标元组展平为一维列表(如 [(x,y), (a,b)] → [x,y,a,b])
            for coord in params:
                points.extend(list(coord))
            compressed.append({cmd_short: points})
    return json.dumps(compressed, separators=(',', ':'))

示例输出:

[{"m":[100,177]},{"l":[107,169]},{"q":[116,172,127,172]},...]

3. 路径数据解压(decompress_json_to_path函数)

def decompress_json_to_path(compressed_json):
    command_map = {'m': 'moveto', 'l': 'lineto', 'q': 'qcurveto', 'z': 'closepath'}
    data = json.loads(compressed_json)
    decompressed = []
    for item in data:
        cmd_short = next(iter(item))
        points = item[cmd_short]
        cmd = command_map[cmd_short]
        if not points:
            decompressed.append((cmd, ()))  # 闭合路径无参数
        else:
            # 将一维列表转换为坐标元组(如 [x,y,a,b] → [(x,y), (a,b)])
            coords = []
            for i in range(0, len(points), 2):
                coords.append((points[i], points[i+1]))
            decompressed.append((cmd, tuple(coords)))
    return decompressed

4. 可视化渲染(show_ttf函数)

def show_ttf(data):
    codes, vertices = parse_commands(data)
    path = path(vertices, codes)
    fig, ax = plt.subplots()
    patch = patches.pathpatch(path, facecolor='orange', lw=2)
    ax.add_patch(patch)
    ax.set_xlim(0, 250)  # 根据数据范围调整坐标轴
    ax.set_ylim(-30, 220)
    plt.gca().set_aspect('equal')
    plt.show()

完整代码与运行结果

示例数据

data = [
    ('moveto', ((100, 177),)),
    ('lineto', ((107, 169),)),
    ('qcurveto', ((116, 172), (127, 172))),
    # ... 其他路径命令(如闭合路径、复杂曲线)
]

执行流程

# 压缩数据
compressed_json = compress_path_to_json(data)
print("压缩后的json:", compressed_json)

# 解压数据
decompressed = decompress_json_to_path(compressed_json)
print("解压后的路径数据:", decompressed)

# 可视化
show_ttf(decompressed)

结果展示

1. 压缩后的json片段

[
  {"m":[100,177]},
  {"l":[107,169]},
  {"q":[116,172,127,172]},
  {"z":[]}
]

2. 解压后的路径数据

[
    ('moveto', ((100, 177),)),
    ('lineto', ((107, 169),)),
    ('qcurveto', ((116, 172), (127, 172))),
    ('closepath', ())
]

技术要点总结

  1. 路径命令映射

    • m → moveto:移动到起点
    • l → lineto:绘制直线
    • q → qcurveto:二次贝塞尔曲线
    • z → closepath:闭合路径
  2. json压缩策略

    • 将坐标元组展平为一维列表,减少冗余。
    • 闭合路径(z)的参数为空列表。
  3. matplotlib路径渲染

    • 使用path对象和pathpatch实现复杂曲线的绘制。
    • curve3命令需成对使用,适配二次贝塞尔曲线的参数。

应用场景

  • web开发:将矢量路径数据嵌入svg或canvas元素。
  • 字体设计:存储和传输字体轮廓路径。
  • 数据可视化:动态生成并传输图表路径数据。
import matplotlib.pyplot as plt
from matplotlib.path import path
import matplotlib.patches as patches


# 解析输入数据


def parse_commands(data):
    codes = []
    vertices = []
    for command, params in data:
        if command == 'moveto':
            codes.append(path.moveto)
            vertices.append(params[0])
        elif command == 'lineto':
            codes.append(path.lineto)
            vertices.append(params[0])
        elif command == 'qcurveto':
            # check if there are enough points to form a quadratic bezier curve segment
            for i in range(0, len(params) - 1, 2):  # ensure we don't go out of bounds
                control_point = params[i]
                end_point = params[i + 1]
                codes.extend([path.curve3, path.curve3])  # two curve3 commands for the quad bezier
                vertices.extend([control_point, end_point])
        elif command == 'closepath':
            codes.append(path.closepoly)
            vertices.append(vertices[0])  # closing back to the start point
    return codes, vertices


def show_ttf():
    codes, vertices = parse_commands(data)

    path = path(vertices, codes)

    fig, ax = plt.subplots()
    patch = patches.pathpatch(path, facecolor='orange', lw=2)
    ax.add_patch(patch)
    ax.set_xlim(0, 250)  # adjust these limits based on your data's extent
    ax.set_ylim(-30, 220)  # adjust these limits based on your data's extent
    plt.gca().set_aspect('equal', adjustable='box')  # keep aspect ratio equal
    plt.show()


import json


def compress_path_to_json(data):
    command_map = {
        'moveto': 'm',
        'lineto': 'l',
        'qcurveto': 'q',
        'closepath': 'z'
    }

    compressed = []
    for cmd, params in data:
        command_type = command_map[cmd]
        points = []
        if cmd == 'closepath':
            pass  # closepath无需坐标
        else:
            # 确保params[0]是坐标点列表(即使只有一个点)
            for param in params:
                points += list(param)

        compressed.append({
            command_type: points
        })

    return json.dumps(compressed, separators=(',', ':'))


data = [('moveto', ((100, 177),)), ('lineto', ((107, 169),)), ('qcurveto', ((116, 172), (127, 172))),
        ('lineto', ((240, 172),)), ('lineto', ((224, 190),)), ('lineto', ((212, 177),)), ('lineto', ((175, 177),)),
        ('qcurveto', ((183, 186), (176, 200), (154, 210))), ('lineto', ((152, 207),)),
        ('qcurveto', ((164, 190), (166, 177))), ('closepath', ()), ('moveto', ((204, 143),)), ('lineto', ((211, 148),)),
        ('lineto', ((198, 162),)), ('lineto', ((189, 152),)), ('lineto', ((143, 152),)), ('lineto', ((128, 160),)),
        ('qcurveto', ((129, 149), (129, 116), (128, 102))), ('lineto', ((142, 106),)), ('lineto', ((142, 114),)),
        ('lineto', ((191, 114),)), ('lineto', ((191, 105),)), ('lineto', ((205, 111),)),
        ('qcurveto', ((204, 119), (204, 135), (204, 143))), ('closepath', ()), ('moveto', ((142, 147),)),
        ('lineto', ((191, 147),)), ('lineto', ((191, 119),)), ('lineto', ((142, 119),)), ('closepath', ()),
        ('moveto', ((119, 87),)), ('lineto', ((218, 87),)), ('lineto', ((218, 6),)),
        ('qcurveto', ((218, -3), (210, -5), (181, -3))), ('lineto', ((181, -8),)),
        ('qcurveto', ((212, -13), (212, -26))), ('qcurveto', ((221, -22), (231, -12), (231, 2))),
        ('lineto', ((231, 80),)), ('lineto', ((240, 87),)), ('lineto', ((224, 102),)), ('lineto', ((216, 92),)),
        ('lineto', ((119, 92),)), ('lineto', ((105, 100),)), ('qcurveto', ((106, 84), (106, 5), (105, -26))),
        ('lineto', ((119, -18),)), ('closepath', ()), ('moveto', ((196, 58),)), ('lineto', ((203, 63),)),
        ('lineto', ((188, 76),)), ('lineto', ((182, 67),)), ('lineto', ((151, 67),)), ('lineto', ((137, 76),)),
        ('qcurveto', ((138, 59), (138, 30), (137, 5))), ('lineto', ((150, 11),)), ('lineto', ((150, 21),)),
        ('lineto', ((184, 21),)), ('lineto', ((184, 10),)), ('lineto', ((197, 16),)),
        ('qcurveto', ((196, 27), (196, 48), (196, 58))), ('closepath', ()), ('moveto', ((150, 62),)),
        ('lineto', ((184, 62),)), ('lineto', ((184, 26),)), ('lineto', ((150, 26),)), ('closepath', ()),
        ('moveto', ((36, 63),)), ('qcurveto', ((66, 100), (94, 148))), ('lineto', ((103, 152),)),
        ('lineto', ((83, 163),)), ('qcurveto', ((74, 138), (66, 125))), ('lineto', ((30, 123),)),
        ('qcurveto', ((50, 154), (71, 193))), ('lineto', ((82, 197),)), ('lineto', ((59, 209),)),
        ('qcurveto', ((51, 178), (23, 124), (14, 124))), ('lineto', ((25, 106),)),
        ('qcurveto', ((31, 111), (50, 117), (63, 119))), ('qcurveto', ((44, 87), (24, 63), (18, 62))),
        ('lineto', ((28, 44),)), ('qcurveto', ((39, 51), (68, 60), (98, 66))), ('lineto', ((97, 70),)),
        ('qcurveto', ((67, 66), (36, 63))), ('closepath', ()), ('moveto', ((11, 14),)), ('lineto', ((21, -4),)),
        ('qcurveto', ((30, 4), (65, 20), (95, 30))), ('lineto', ((94, 34),)),
        ('qcurveto', ((72, 28), (25, 16), (11, 14))), ('closepath', ())]


def decompress_json_to_path(compressed_json):
    command_map = {
        'm': 'moveto',
        'l': 'lineto',
        'q': 'qcurveto',
        'z': 'closepath'
    }

    data = json.loads(compressed_json)
    decompressed = []

    for item in data:
        cmd_char = next(iter(item))  # 获取命令字符
        points = item[cmd_char]
        original_cmd = command_map[cmd_char]

        if not points:
            # closepath,参数为空
            decompressed.append((original_cmd, ()))
        else:
            # 将points列表转换为坐标点元组的元组
            tuples = []
            for i in range(0, len(points), 2):
                x = points[i]
                y = points[i + 1]
                tuples.append((x, y))
            params = tuple(tuples)
            decompressed.append((original_cmd, params))

    return decompressed


compressed_json = compress_path_to_json(data)

# 解压
decompressed = decompress_json_to_path(compressed_json)



以上就是使用python实现矢量路径的压缩、解压与可视化的详细内容,更多关于python矢量路径解压缩与可视化的资料请关注代码网其它相关文章!

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com