当前位置: 代码网 > it编程>数据库>Redis > Redis KEYS查询大批量数据替代方案

Redis KEYS查询大批量数据替代方案

2025年01月01日 Redis 我要评论
前言在使用 redis 时,keys 命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞 redis 服务。本文将介绍scan命令、有序集合、哈希表和redisearc

前言

在使用 redis 时,keys 命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞 redis 服务。本文将介绍scan命令、有序集合、哈希表和redisearch模块四种替代 keys 的高效方案,以应对大批量数据的查询和管理。根据本人实际使用情况,查询redis大批量数据的情况下推荐使用scan命令较好。

keys命令问题背景

keys 命令会遍历整个键空间,对于包含大量键的 redis 实例,这可能导致以下问题:
高延迟:执行时间较长,影响其他命令的响应速度。
阻塞 redis:在单线程模型下,keys 会阻塞 redis 服务器,导致其他操作无法及时处理。
内存消耗:返回所有匹配的键可能会占用大量内存。
因此,在生产环境中应尽量避免使用 keys 命令。

替代方案

1.使用 scan 命令

理论介绍

scan 是一个增量迭代器,可以分批逐步遍历键空间,避免一次性加载所有键。它支持游标(cursor)机制,允许用户通过多次调用来完成完整的遍历。

优点

非阻塞:不会阻塞 redis 服务器,适合在线环境。
低资源消耗:每次只返回少量键,减少内存压力。

缺点

结果集不固定:scan 的结果集不是固定的,可能会有重复或遗漏的键,特别是在键频繁变化的情况下。
额外参数:需要合理设置 count 参数以平衡遍历速度和资源消耗。

示例代码

/**
 * scan命令测试
 * @author senfel
 * @date 2024/12/26 11:34
 * @return void
 */
@test
public void scan() {
    try (jedis jedis = new jedis("localhost", 6379)) {
        string cursor = "0";
        scanparams scanparams = new scanparams().match("sys_dict:*").count(100);
        do {
            scanresult<string> scanresult = jedis.scan(cursor, scanparams);
            for (string key : scanresult.getresult()) {
                system.out.println("found key: " + key);
            }
            cursor = scanresult.getcursor();
        } while (!cursor.equals("0"));
    }
}

2. 使用有序集合(sorted set)

理论介绍

如果需要对键进行排序或范围查询,可以考虑将键存储在有序集合中,并为每个键分配一个唯一的分数(score)。这样可以通过 zrange 或 zrevrange 等命令高效地获取指定范围内的键。

优点

高效查询:支持快速的范围查询和排序。
灵活性:可以根据业务需求调整分数规则。

缺点

额外开销:需要维护有序集合,增加了写入操作的复杂度。

示例代码

/**
 * sortset
 * @author senfel
 * @date 2024/12/26 11:51
 * @return void
 */
@test
public void sortset() {
    try (jedis jedis = new jedis("localhost", 6379)) {
        // 添加键到有序集合
        for (int i = 0; i < 100; i++) {
            jedis.zadd("sorted_keys", system.currenttimemillis(), "senfel"+i);
        }
        // 获取前 10 个键
        set<string> keys = jedis.zrange("sorted_keys", 0, 9);
        for (string key : keys) {
            system.out.println("key from sorted set: " + key);
        }
    }
}

3. 使用哈希(hash)

理论介绍

如果键具有相似的结构或属于同一类目,可以将它们存储在一个哈希表中,每个字段代表一个键。这样可以通过 hgetall 或 hscan 来批量获取相关键。

优点

集中管理:便于批量操作和维护。
高效访问:哈希表提供了 o(1) 的查找性能。

缺点

适用范围有限:适用于键具有相同前缀或分类的情况。

示例代码

/**
 * usehash
 * @author senfel
 * @date 2024/12/26 11:55
 * @return void
 */
@test
public void usehash() {
    try (jedis jedis = new jedis("localhost", 6379)) {
        for (int i = 0; i < 100; i++) {
            // 添加键到哈希表
            jedis.hset("user_data", "name"+i, "senfel"+i);
        }
        // 获取所有键值对
        map<string, string> userdata = jedis.hgetall("user_data");
        for (map.entry<string, string> entry : userdata.entryset()) {
            system.out.println("user data: " + entry.getkey() + " -> " + entry.getvalue());
        }
    }
}

4. 使用 redis 模块(如 redisearch)

理论介绍

redis 模块扩展了 redis 的功能,其中 redisearch 提供了全文搜索和索引功能,能够高效地管理和查询大量数据。它支持复杂的查询语法和过滤条件。

redisearch安装推荐使用docker

docker run --name redisearch -p 16379:6379 -v redis-data:/data redis/redis-stack-server:latest

优点

强大查询能力:支持全文搜索、模糊匹配等高级查询。
高性能:优化的索引结构保证了高效的查询性能。

缺点

依赖外部模块:需要安装和配置 redis 模块。
学习成本:api 和配置相对复杂,需要一定的时间熟悉。

maven依赖

<dependency>
    <groupid>com.redislabs</groupid>
    <artifactid>jredisearch</artifactid>
    <version>2.0.0</version>
</dependency>

示例代码

/**
 * useredisearch 未安装redisearch未测试
 * @author senfel
 * @date 2024/12/26 12:26 
 * @return void
 */
@test
public void useredisearch() {
    client client = client.create("localhost", 6379).connect();
    // 创建索引并添加文档
    client.ftcreate("idx", schema.newbuilder()
            .addfield(new textfield("title"))
            .addfield(new textfield("content"))
            .build());
    client.ftadd("idx", "doc1", 1.0, document.newdocument()
            .addfield("title", "redis search")
            .addfield("content", "learn how to use redis search"));
    // 查询文档
    searchresult result = client.ftsearch("idx", new query("redis"));
    for (document doc : result.documents()) {
        system.out.println("found document: " + doc.getid());
    }
    client.close();
}

总结

综上所述,redis 大批量数据解决方案目前有scan命令、有序集合、哈希表、redisearch扩展模块。一般对于redis 大批量键遍历可以使用非阻塞低资源消耗的scan 命令,对于需要排序或范围查询的场景则使用有序集合,对于键具有相同前缀或分类的情况可以使用哈希表,如果需要全文搜索或复杂查询则可以使用高性能强大查询能力的redisearch。

以上就是redis keys查询大批量数据替代方案的详细内容,更多关于redis keys数据替代方案的资料请关注代码网其它相关文章!

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com