当前位置: 代码网 > 科技>人工智能>神经网络 > AIGC实战——归一化流模型(Normalizing Flow Model)

AIGC实战——归一化流模型(Normalizing Flow Model)

2024年08月06日 神经网络 我要评论
归一化流模型是由神经网络定义的可逆函数,通过变量变换,直接对数据密度函数进行建模。在一般情况下,变量变换方程需要计算高度复杂的雅可比行列式,但这并不实际。为了解决这一问题,RealNVP 模型限制了神经网络的形式,使其满足两个基本条件:可逆性和易于计算的雅可比行列式。
(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com