当前位置: 代码网 > it编程>软件设计>交互 > whisper使用

whisper使用

2024年08月04日 交互 我要评论
1-7行:导入了所需的库和模块,包括argparse(命令行参数解析)、os(操作系统交互)、traceback(错误跟踪)、warnings(警告信息)、numpy(科学计算)、torch(PyTorch深度学习库)、tqdm(进度条显示)。整体来看,这个脚本提供了一个完整的命令行界面,允许用户指定音频文件、模型、输出格式和其他参数,以执行音频转录任务。函数中,根据用户输入的参数,加载了Whisper模型,并设置了输出格式和目录。指定要调用的模型, 可以把模型先下载到本地,直接指定模型路径加载本地模型。


github: https://gitcode.com/openai/whisper/overview

1. 直接调用 语音识别

,transcribe()方法会读取整个文件,并使用一个30秒的滑动窗口对音频进行处理,对每个窗口进行自回归序列到序列的预测。
官网readme调用1

import whisper

model = whisper.load_model("base")  # 加载模型
result = model.transcribe("audio.mp3")  # 指定音频路径 识别
print(result["text"])  # 输出识别结果

load_model方法在__init__.py文件中有定义

{'text': ' 你一定會笑著說 二百克芝麻能力好耐架', 'segments': [{'id': 0, 'seek': 0, 'start': 0.0, 'end': 2.0, 'text': ' 你一定會笑著說', 'tokens': [50365, 10930, 24272, 6236, 11600, 19382, 4622, 50465], 'temperature': 0.0, 'avg_logprob': -0.5130815124511718, 'compression_ratio': 0.8253968253968254, 'no_speech_prob': 0.12529681622982025}, {'id': 1, 'seek': 0, 'start': 2.0, 'end': 5.5, 'text': ' 二百克芝麻能力好耐架', 'tokens': [50465, 220, 11217, 31906, 24881, 13778, 251, 38999, 8225, 13486, 2131, 4450, 238, 7360, 114, 50640], 'temperature': 0.0, 'avg_logprob': -0.5130815124511718, 'compression_ratio': 0.8253968253968254, 'no_speech_prob': 0.12529681622982025}], 'language': 'yue'}

2. 语种识别 whisper.detect_language()和whisper.decode()

以下是使用whisper.detect_language()和whisper.decode()的示例用法,这些方法提供对模型的更低级别访问。更低级别可以说是更底层的调用。
官网readme调用2

import whisper

model = whisper.load_model("base") # 加载预训练的语音识别模型,这里使用了名为"base"的模型。

# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)  # 对加载的音频进行填充或裁剪,使其适合30秒的滑动窗口处理。

# make log-mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device) 
# 将音频转换为对数梅尔频谱图,并将其移动到与模型相同的设备(如gpu)上进行处理。

# detect the spoken language
_, probs = model.detect_language(mel) # 使用模型进行语言检测,返回检测到的语言和对应的概率。
# 打印检测到的语言,选取概率最高的语言作为结果。
print(f"detected language: {max(probs, key=probs.get)}")

# decode the audio
# 置解码的选项,如语言模型、解码器等。
options = whisper.decodingoptions()
# 使用模型对音频进行解码,生成识别结果。
result = whisper.decode(model, mel, options)

# print the recognized text
# 打印识别结果,即模型识别出的文本内容。
print(result.text)

3. 指定要识别的语种做语音识别

from whisper import load_model
from whisper.transcribe import transcribe
model = load_model(model_path, device=device)
# 指定model 音频路径 要识别的语言类型  yue--粤语
result = transcribe(model, audio_path, language="yue")

whisper 源码的transcribe函数

def transcribe(
    model: "whisper",
    audio: union[str, np.ndarray, torch.tensor],
    *,
    verbose: optional[bool] = none,
    temperature: union[float, tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
    compression_ratio_threshold: optional[float] = 2.4,
    logprob_threshold: optional[float] = -1.0,
    no_speech_threshold: optional[float] = 0.6,
    condition_on_previous_text: bool = true,
    initial_prompt: optional[str] = none,
    word_timestamps: bool = false,
    prepend_punctuations: str = "\"'“¿([{-",
    append_punctuations: str = "\"'.。,,!!??::”)]}、",
    clip_timestamps: union[str, list[float]] = "0",
    hallucination_silence_threshold: optional[float] = none,
    **decode_options,
):
    """
    transcribe an audio file using whisper

    parameters
    ----------
    model: whisper
        the whisper model instance

    audio: union[str, np.ndarray, torch.tensor]
        the path to the audio file to open, or the audio waveform

    verbose: bool
        whether to display the text being decoded to the console. if true, displays all the details,
        if false, displays minimal details. if none, does not display anything

    temperature: union[float, tuple[float, ...]]
        temperature for sampling. it can be a tuple of temperatures, which will be successively used
        upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.

    compression_ratio_threshold: float
        if the gzip compression ratio is above this value, treat as failed

    logprob_threshold: float
        if the average log probability over sampled tokens is below this value, treat as failed

    no_speech_threshold: float
        if the no_speech probability is higher than this value and the average log probability
        over sampled tokens is below `logprob_threshold`, consider the segment as silent

    condition_on_previous_text: bool
        if true, the previous output of the model is provided as a prompt for the next window;
        disabling may make the text inconsistent across windows, but the model becomes less prone to
        getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.

    word_timestamps: bool
        extract word-level timestamps using the cross-attention pattern and dynamic time warping,
        and include the timestamps for each word in each segment.

    prepend_punctuations: str
        if word_timestamps is true, merge these punctuation symbols with the next word

    append_punctuations: str
        if word_timestamps is true, merge these punctuation symbols with the previous word

    initial_prompt: optional[str]
        optional text to provide as a prompt for the first window. this can be used to provide, or
        "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
        to make it more likely to predict those word correctly.

    decode_options: dict
        keyword arguments to construct `decodingoptions` instances

    clip_timestamps: union[str, list[float]]
        comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
        the last end timestamp defaults to the end of the file.

    hallucination_silence_threshold: optional[float]
        when word_timestamps is true, skip silent periods longer than this threshold (in seconds)
        when a possible hallucination is detected

    returns
    -------
    a dictionary containing the resulting text ("text") and segment-level details ("segments"), and
    the spoken language ("language"), which is detected when `decode_options["language"]` is none.
    """
    dtype = torch.float16 if decode_options.get("fp16", true) else torch.float32
    if model.device == torch.device("cpu"):
        if torch.cuda.is_available():
            warnings.warn("performing inference on cpu when cuda is available")
        if dtype == torch.float16:
            warnings.warn("fp16 is not supported on cpu; using fp32 instead")
            dtype = torch.float32

    if dtype == torch.float32:
        decode_options["fp16"] = false

    # pad 30-seconds of silence to the input audio, for slicing
    mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=n_samples)
    content_frames = mel.shape[-1] - n_frames
    content_duration = float(content_frames * hop_length / sample_rate)

    if decode_options.get("language", none) is none:
        if not model.is_multilingual:
            decode_options["language"] = "en"
        else:
            if verbose:
                print(
                    "detecting language using up to the first 30 seconds. use `--language` to specify the language"
                )
            mel_segment = pad_or_trim(mel, n_frames).to(model.device).to(dtype)
            _, probs = model.detect_language(mel_segment)
            decode_options["language"] = max(probs, key=probs.get)
            if verbose is not none:
                print(
                    f"detected language: {languages[decode_options['language']].title()}"
                )

    language: str = decode_options["language"]
    task: str = decode_options.get("task", "transcribe")
    tokenizer = get_tokenizer(
        model.is_multilingual,
        num_languages=model.num_languages,
        language=language,
        task=task,
    )

    if isinstance(clip_timestamps, str):
        clip_timestamps = [
            float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])
        ]
    seek_points: list[int] = [round(ts * frames_per_second) for ts in clip_timestamps]
    if len(seek_points) == 0:
        seek_points.append(0)
    if len(seek_points) % 2 == 1:
        seek_points.append(content_frames)
    seek_clips: list[tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))

    punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"

    if word_timestamps and task == "translate":
        warnings.warn("word-level timestamps on translations may not be reliable.")

    def decode_with_fallback(segment: torch.tensor) -> decodingresult:
        temperatures = (
            [temperature] if isinstance(temperature, (int, float)) else temperature
        )
        decode_result = none

        for t in temperatures:
            kwargs = {**decode_options}
            if t > 0:
                # disable beam_size and patience when t > 0
                kwargs.pop("beam_size", none)
                kwargs.pop("patience", none)
            else:
                # disable best_of when t == 0
                kwargs.pop("best_of", none)

            options = decodingoptions(**kwargs, temperature=t)
            decode_result = model.decode(segment, options)

            needs_fallback = false
            if (
                compression_ratio_threshold is not none
                and decode_result.compression_ratio > compression_ratio_threshold
            ):
                needs_fallback = true  # too repetitive
            if (
                logprob_threshold is not none
                and decode_result.avg_logprob < logprob_threshold
            ):
                needs_fallback = true  # average log probability is too low
            if (
                no_speech_threshold is not none
                and decode_result.no_speech_prob > no_speech_threshold
            ):
                needs_fallback = false  # silence
            if not needs_fallback:
                break

        return decode_result

    clip_idx = 0
    seek = seek_clips[clip_idx][0]
    input_stride = exact_div(
        n_frames, model.dims.n_audio_ctx
    )  # mel frames per output token: 2
    time_precision = (
        input_stride * hop_length / sample_rate
    )  # time per output token: 0.02 (seconds)
    all_tokens = []
    all_segments = []
    prompt_reset_since = 0

    if initial_prompt is not none:
        initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
        all_tokens.extend(initial_prompt_tokens)
    else:
        initial_prompt_tokens = []

    def new_segment(
        *, start: float, end: float, tokens: torch.tensor, result: decodingresult
    ):
        tokens = tokens.tolist()
        text_tokens = [token for token in tokens if token < tokenizer.eot]
        return {
            "seek": seek,
            "start": start,
            "end": end,
            "text": tokenizer.decode(text_tokens),
            "tokens": tokens,
            "temperature": result.temperature,
            "avg_logprob": result.avg_logprob,
            "compression_ratio": result.compression_ratio,
            "no_speech_prob": result.no_speech_prob,
        }

    # show the progress bar when verbose is false (if true, transcribed text will be printed)
    with tqdm.tqdm(
        total=content_frames, unit="frames", disable=verbose is not false
    ) as pbar:
        last_speech_timestamp = 0.0
        # note: this loop is obscurely flattened to make the diff readable.
        # a later commit should turn this into a simpler nested loop.
        # for seek_clip_start, seek_clip_end in seek_clips:
        #     while seek < seek_clip_end
        while clip_idx < len(seek_clips):
            seek_clip_start, seek_clip_end = seek_clips[clip_idx]
            if seek < seek_clip_start:
                seek = seek_clip_start
            if seek >= seek_clip_end:
                clip_idx += 1
                if clip_idx < len(seek_clips):
                    seek = seek_clips[clip_idx][0]
                continue
            time_offset = float(seek * hop_length / sample_rate)
            window_end_time = float((seek + n_frames) * hop_length / sample_rate)
            segment_size = min(n_frames, content_frames - seek, seek_clip_end - seek)
            mel_segment = mel[:, seek : seek + segment_size]
            segment_duration = segment_size * hop_length / sample_rate
            mel_segment = pad_or_trim(mel_segment, n_frames).to(model.device).to(dtype)

            decode_options["prompt"] = all_tokens[prompt_reset_since:]
            result: decodingresult = decode_with_fallback(mel_segment)
            tokens = torch.tensor(result.tokens)

            if no_speech_threshold is not none:
                # no voice activity check
                should_skip = result.no_speech_prob > no_speech_threshold
                if (
                    logprob_threshold is not none
                    and result.avg_logprob > logprob_threshold
                ):
                    # don't skip if the logprob is high enough, despite the no_speech_prob
                    should_skip = false

                if should_skip:
                    seek += segment_size  # fast-forward to the next segment boundary
                    continue

            previous_seek = seek
            current_segments = []

            # anomalous words are very long/short/improbable
            def word_anomaly_score(word: dict) -> float:
                probability = word.get("probability", 0.0)
                duration = word["end"] - word["start"]
                score = 0.0
                if probability < 0.15:
                    score += 1.0
                if duration < 0.133:
                    score += (0.133 - duration) * 15
                if duration > 2.0:
                    score += duration - 2.0
                return score

            def is_segment_anomaly(segment: optional[dict]) -> bool:
                if segment is none or not segment["words"]:
                    return false
                words = [w for w in segment["words"] if w["word"] not in punctuation]
                words = words[:8]
                score = sum(word_anomaly_score(w) for w in words)
                return score >= 3 or score + 0.01 >= len(words)

            def next_words_segment(segments: list[dict]) -> optional[dict]:
                return next((s for s in segments if s["words"]), none)

            timestamp_tokens: torch.tensor = tokens.ge(tokenizer.timestamp_begin)
            single_timestamp_ending = timestamp_tokens[-2:].tolist() == [false, true]

            consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
            consecutive.add_(1)
            if len(consecutive) > 0:
                # if the output contains two consecutive timestamp tokens
                slices = consecutive.tolist()
                if single_timestamp_ending:
                    slices.append(len(tokens))

                last_slice = 0
                for current_slice in slices:
                    sliced_tokens = tokens[last_slice:current_slice]
                    start_timestamp_pos = (
                        sliced_tokens[0].item() - tokenizer.timestamp_begin
                    )
                    end_timestamp_pos = (
                        sliced_tokens[-1].item() - tokenizer.timestamp_begin
                    )
                    current_segments.append(
                        new_segment(
                            start=time_offset + start_timestamp_pos * time_precision,
                            end=time_offset + end_timestamp_pos * time_precision,
                            tokens=sliced_tokens,
                            result=result,
                        )
                    )
                    last_slice = current_slice

                if single_timestamp_ending:
                    # single timestamp at the end means no speech after the last timestamp.
                    seek += segment_size
                else:
                    # otherwise, ignore the unfinished segment and seek to the last timestamp
                    last_timestamp_pos = (
                        tokens[last_slice - 1].item() - tokenizer.timestamp_begin
                    )
                    seek += last_timestamp_pos * input_stride
            else:
                duration = segment_duration
                timestamps = tokens[timestamp_tokens.nonzero().flatten()]
                if (
                    len(timestamps) > 0
                    and timestamps[-1].item() != tokenizer.timestamp_begin
                ):
                    # no consecutive timestamps but it has a timestamp; use the last one.
                    last_timestamp_pos = (
                        timestamps[-1].item() - tokenizer.timestamp_begin
                    )
                    duration = last_timestamp_pos * time_precision

                current_segments.append(
                    new_segment(
                        start=time_offset,
                        end=time_offset + duration,
                        tokens=tokens,
                        result=result,
                    )
                )
                seek += segment_size

            if word_timestamps:
                add_word_timestamps(
                    segments=current_segments,
                    model=model,
                    tokenizer=tokenizer,
                    mel=mel_segment,
                    num_frames=segment_size,
                    prepend_punctuations=prepend_punctuations,
                    append_punctuations=append_punctuations,
                    last_speech_timestamp=last_speech_timestamp,
                )

                if not single_timestamp_ending:
                    last_word_end = get_end(current_segments)
                    if last_word_end is not none and last_word_end > time_offset:
                        seek = round(last_word_end * frames_per_second)

                # skip silence before possible hallucinations
                if hallucination_silence_threshold is not none:
                    threshold = hallucination_silence_threshold
                    if not single_timestamp_ending:
                        last_word_end = get_end(current_segments)
                        if last_word_end is not none and last_word_end > time_offset:
                            remaining_duration = window_end_time - last_word_end
                            if remaining_duration > threshold:
                                seek = round(last_word_end * frames_per_second)
                            else:
                                seek = previous_seek + segment_size

                    # if first segment might be a hallucination, skip leading silence
                    first_segment = next_words_segment(current_segments)
                    if first_segment is not none and is_segment_anomaly(first_segment):
                        gap = first_segment["start"] - time_offset
                        if gap > threshold:
                            seek = previous_seek + round(gap * frames_per_second)
                            continue

                    # skip silence before any possible hallucination that is surrounded
                    # by silence or more hallucinations
                    hal_last_end = last_speech_timestamp
                    for si in range(len(current_segments)):
                        segment = current_segments[si]
                        if not segment["words"]:
                            continue
                        if is_segment_anomaly(segment):
                            next_segment = next_words_segment(
                                current_segments[si + 1 :]
                            )
                            if next_segment is not none:
                                hal_next_start = next_segment["words"][0]["start"]
                            else:
                                hal_next_start = time_offset + segment_duration
                            silence_before = (
                                segment["start"] - hal_last_end > threshold
                                or segment["start"] < threshold
                                or segment["start"] - time_offset < 2.0
                            )
                            silence_after = (
                                hal_next_start - segment["end"] > threshold
                                or is_segment_anomaly(next_segment)
                                or window_end_time - segment["end"] < 2.0
                            )
                            if silence_before and silence_after:
                                seek = round(
                                    max(time_offset + 1, segment["start"])
                                    * frames_per_second
                                )
                                if content_duration - segment["end"] < threshold:
                                    seek = content_frames
                                current_segments[si:] = []
                                break
                        hal_last_end = segment["end"]

                last_word_end = get_end(current_segments)
                if last_word_end is not none:
                    last_speech_timestamp = last_word_end

            if verbose:
                for segment in current_segments:
                    start, end, text = segment["start"], segment["end"], segment["text"]
                    line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
                    print(make_safe(line))

            # if a segment is instantaneous or does not contain text, clear it
            for i, segment in enumerate(current_segments):
                if segment["start"] == segment["end"] or segment["text"].strip() == "":
                    segment["text"] = ""
                    segment["tokens"] = []
                    segment["words"] = []

            all_segments.extend(
                [
                    {"id": i, **segment}
                    for i, segment in enumerate(
                        current_segments, start=len(all_segments)
                    )
                ]
            )
            all_tokens.extend(
                [token for segment in current_segments for token in segment["tokens"]]
            )

            if not condition_on_previous_text or result.temperature > 0.5:
                # do not feed the prompt tokens if a high temperature was used
                prompt_reset_since = len(all_tokens)

            # update progress bar
            pbar.update(min(content_frames, seek) - previous_seek)

    return dict(
        text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
        segments=all_segments,
        language=language,
    )

函数解析

1. transcript.py

kimichat:
这段代码是一个python脚本,它使用了whisper模型来进行音频转录。whisper是一个由openai开发的大型语音识别模型,能够处理多种语言和任务。以下是代码的主要功能和组件的逐行解释:

1-7行:导入了所需的库和模块,包括argparse(命令行参数解析)、os(操作系统交互)、traceback(错误跟踪)、warnings(警告信息)、numpy(科学计算)、torch(pytorch深度学习库)、tqdm(进度条显示)。

9-14行:定义了一些常量和辅助函数,如frames_per_second(每秒帧数)、hop_length(帧跳跃长度)、n_frames(每个音频段的帧数)、n_samples(音频样本数)、sample_rate(采样率)等。

16-25行:定义了log_mel_spectrogram函数,用于将音频信号转换为mel频率倒谱系数,这是语音识别中常用的特征表示方法。

27-36行:定义了pad_or_trim函数,用于对音频信号进行填充或裁剪,以匹配模型所需的输入长度。

38-55行:定义了transcribe函数,它是脚本的核心,负责加载音频、预处理、使用whisper模型进行转录,并返回转录结果。它接受多种参数,如verbose(是否显示详细信息)、temperature(采样温度)、compression_ratio_threshold(压缩比阈值)等,这些参数影响转录过程和结果。
57-82行:在transcribe函数中,首先检查设备类型和数据类型(是否使用半精度浮点数),然后对音频进行预处理,包括检测语言、加载tokenizer、处理音频剪辑时间戳等。
84-131行:实现了一个循环,用于处理音频文件的每个剪辑段,进行转录,并更新进度条。
133-174行:在transcribe函数中,还实现了对转录结果的处理,包括添加单词时间戳、处理可能的幻觉(hallucination)和沉默段。

176-198行:定义了cli函数,它使用argparse解析命令行参数,并调用transcribe函数来处理音频文件。

200-206行:在cli函数中,根据用户输入的参数,加载了whisper模型,并设置了输出格式和目录。

208-213行:实现了对每个音频文件的循环处理,调用transcribe函数进行转录,并将结果写入到文件中。

215-218行:最后,如果这个脚本作为主程序运行,它将执行cli函数,开始命令行界面。

整体来看,这个脚本提供了一个完整的命令行界面,允许用户指定音频文件、模型、输出格式和其他参数,以执行音频转录任务。它使用了whisper模型的强大功能,能够处理多种语言和语音识别任务。

2. tokenizer.py

根据缩写指定要识别的语言
在这里插入图片描述

3. audio.py

处理音频用到了ffmpeg命令行工具,在运行环境要安装上ffmpeg命令行工具。
在这里插入图片描述

4. __ init__.py

指定要调用的模型, 可以把模型先下载到本地,直接指定模型路径加载本地模型。
grep -h “example” * 匹配内容的同时输出被匹配的文件名。
在这里插入图片描述

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com