当前位置: 代码网 > it编程>编程语言>C/C++ > 图像处理_积分图

图像处理_积分图

2024年08月04日 C/C++ 我要评论
积分图算法是图像处理中的经典算法之一,由Crow在1984年首次提出,它是为了在多尺度透视投影中提高渲染速度。积分图算法是一种和以及图像区域平方和的算法。直白的说,就是很快计算一幅图像任意区域,也就是跟平方和。它的核心思想就是对每一个图像建立起自己的积分图查找表,在图像处理的阶段就可以,从而实现对均值卷积的线性时间计算。做到了卷积执行的时间与半径窗口大小的无关联。利用积分图可以极大地加快计算原始图像中任一矩形区域的像素和,因为只需经过一次计算。

目录

1. 积分图算法介绍

2. 基本原理

2.1 构建积分图

2.2 使用积分图

3. 举个例子


1. 积分图算法介绍


        积分图算法是图像处理中的经典算法之一,由crow在1984年首次提出,它是为了在多尺度透视投影中提高渲染速度。

        积分图算法是一种快速计算图像区域和以及图像区域平方和的算法。直白的说,就是很快计算一幅图像任意区域,也就是卷积区域下的像素值的和跟平方和。它的核心思想就是对每一个图像建立起自己的积分图查找表,在图像处理的阶段就可以根据预先建立积分图查找表直接查找,从而实现对均值卷积的线性时间计算。做到了卷积执行的时间与半径窗口大小的无关联。

        利用积分图可以极大地加快计算原始图像中任一矩形区域的像素和,因为只需经过一次计算。这种算法被应用到基于ncc的快速匹配、对象检测和surf变换中、基于统计学的快速滤波器等方面。第一个应用积分图像技术的应用是在viola-jones的对象检测框架中出现。

2. 基本原理

在积分图中,我们需要做两个操作:
1)构建积分图
2)使用积分图

2.1 构建积分图

这里写图片描述

        如上图所示,s(x,y)对应于(x,y)跟左上角原点(0,0)所包围的区域的图像灰度总和。从左上角开始,我们可以根据如下公式推算整个图像的积分图。原始图像(x,y)位置对应的积分值为:

        积分图是由 “每个像素位置(x,y)对应的与原点(0,0)组成的矩形区域内的图像灰度和(称为积分值)” , 组成一个一个新的"图像"。

2.2 使用积分图

这里写图片描述

如上图所示,为了求该矩形区域的灰度之和。我们可以用以下公式表示:

这里的总和并不包含点a,b,c的像素值。如上图所示的小像素点,a,b,c所在的像素点不在矩形区域以内。 

3. 举个例子

原始(灰度)图像 与 积分图像

其中:图像位置(1,1)对应的积分值  i(1,1) = 528 的计算方法为:

        s(1,1) = i(1,1) + s(0,1) + s(1,0) - s(0,0) = 132(原图中(1,1)位置灰度值) + 264(积分图中(0,1)位置积分值) + 264(积分图中(1,0)位置积分值) - 132(积分图中(0,0)位置积分值) = 528

则求下面区域的图像像素灰度值sum(a) = 等于多少?如何求?

则  sum(a) = s(6,5) +s(3,2) -s(3,5) - s(6,2) = 3923 + 792 – 1584 – 1960 = 1171,

可以在原始图像验算下: 133 + 125 + 130 + 118 + 124 + 125 + 127 + 126 + 163 = 1171, 正确

注意:计算积分图第一行,第一列时,对于上方和右方越界的像素点,灰度设为0 ,图示如下:

对应python函数:

python中对应的函数为cv2.integral(返回sum)。根据输出需要,还有两个可选函数cv2.integral2(返回sum与平方和)和cv2.integral3(返回sum、平方和以及旋转45度)。

参考:

【opencv】28 图像积分图算法_opencv 图像平方和-csdn博客

【图像处理】积分图像及其应用_对图像矩阵做积分图怎么做,给出例子-csdn博客

图像检测入门(五)积分图 - 知乎

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com