简介
使用python 实现对数据库表的监控告警功能, 并将告警信息通过钉钉机器人发送到钉钉群
实现dataworks中数据质量的基本功能, 当然 dw的数据质量的规则类型很多, 用起来比较方便, 这里只简单实现了其中两个规则类型的功能, 仅供参考;
初次使用python, 请多指教
使用工具: maxcompute
1. 创建表
1. tmp_monitor_tbl_info
create table if not exists puture_bigdata.tmp_monitor_tbl_info (
`id` string comment '表编号id'
, `tbl_name` string comment '表名'
, `pt_format` string comment '分区格式: yyyy-mm-dd,yyyymmdd 等'
, `val_type` string comment '值类型: 表行数,周期值等'
, `monitor_flag` int comment '监控标识: 0:不监控, 1:监控;'
, `rule_code` int comment '规则编码: 1:表行数,上周期差值, 2:表行数,固定值 等'
, `rule_type` string comment '规则类型: 表行数,上周期差值; 表行数,固定值; 与固定值比较 等'
, `expect_val` int comment '期望值'
, `tbl_sort_code` int comment '表类型编码: 0:其它(维表类), 1:亚马逊, 2:中小平台, 3:市场数据 等'
, `tbl_sort_name` string comment '表类型名字: 0:其它(维表类), 1:亚马逊, 2:中小平台, 3:市场数据 等'
, `pt_num` int comment '分区日期差值'
) comment '数据监控表信息'
tblproperties ("transactional"="true")
;
-- 插入数据
insert into table puture_bigdata_dev.tmp_monitor_tbl_info
select * from (
values (1 , 'ods_amazon_amz_customer_returns_df', 'yyyymmdd', '表行数', 1, 1, '表行数,上周期差值', 0, 1, '亚马逊' , -1)
, (2 , 'ods_amazon_amz_flat_file_all_orders_df', 'yyyymmdd', '表行数', 1, 1, '表行数,上周期差值', 0, 1, '亚马逊' , -1)
, (3 , 'dim_sys_salesman_info_df', 'yyyymmdd', '表行数', 1, 1, '表行数,上周期差值', 0, 0, '其它' , -1)
) as table_name(id, tbl_name, pt_format, val_type, monitor_flag, rule_code, rule_type, expect_val, tbl_sort_code, tbl_sort_name, pt_num) ;
2. tmp_monitor_tbl_info_log_di
create table if not exists puture_bigdata_dev.tmp_monitor_tbl_info_log_di (
`id` string comment '监控id编码:md5(表名_分区)_小时'
, `tbl_name` string comment '表名'
, `stat_time` string comment '统计时间'
, `pt_format` string comment '分区格式: yyyy-mm-dd,yyyymmdd 等'
, `stat_pt` string comment '统计分区'
, `val_type` string comment '值类型: 表行数,周期值等'
, `val` int comment '统计值'
, `rule_code` int comment '规则编码: 1:表行数,上周期差值, 2:表行数,固定值 等'
, `rule_type` string comment '规则类型: 表行数,上周期差值; 表行数,固定值; 与固定值比较 等'
, `expect_val` int comment '期望值'
, `is_exc` int comment '是否异常: 0:否,1:是,默认值0'
, `tbl_sort_code` int comment '表类型编码: 0:其它(维表类), 1:亚马逊, 2:中小平台, 3:市场数据 等'
, `tbl_sort_name` string comment '表类型名字: 0:其它(维表类), 1:亚马逊, 2:中小平台, 3:市场数据 等'
) comment '数据监控信息记录表'
partitioned by (pt string comment '数据日期, yyyy-mm-dd') ;
2. 程序开发
1. 数据检查程序
'''pyodps 3
请确保不要使用从 maxcompute下载数据来处理。下载数据操作常包括table/instance的open_reader以及 dataframe的to_pandas方法。
推荐使用 pyodps dataframe(从 maxcompute 表创建)和maxcompute sql来处理数据。
更详细的内容可以参考:https://help.aliyun.com/document_detail/90481.html
'''
import os
from odps import odps, dataframe
from datetime import datetime, timedelta
from dateutil import parser
options.tunnel.use_instance_tunnel = true
# 获取当前时间
now_time = datetime.now().strftime('%y-%m-%d %h:%m:%s')
print(now_time)
pt = args['date']
print(pt)
date = datetime.strptime(pt, "%y-%m-%d")
# 监控表列表 tbl_sort_code -> 0:其它(维表类), 1:亚马逊, 2:中小平台, 3:市场数据
sql_tbl_info = """
select * from puture_bigdata.tmp_monitor_tbl_info
where monitor_flag = 1 and tbl_sort_code = 3
"""
# 结果表
res_tbl_name = "puture_bigdata.tmp_monitor_tbl_info_log_di"
# 统计sql代码 -- 表行数,上周期差值
def sql_upper_period_diff():
sql = f"""
set odps.sql.hive.compatible=true ;
insert into table {res_tbl_name} partition (pt='{pt}')
select
a.id
, a.tbl_name
, a.stat_time
, a.pt_format
, a.stat_pt
, a.val_type
, a.val
, a.rule_code
, a.rule_type
, a.expect_val
, if (a.val = 0, 1, (if ((a.val - nvl(b.val,0)) >= {expect_val}, 0, 1 ))) as is_exc
, a.tbl_sort_code
, a.tbl_sort_name
from (
select
concat( md5(concat('{tbl_name}', '_', date_format('{date_str}' ,'{pt_format}')) ), '_', {rule_code}, '_', hour('{now_time}') ) as id
, '{tbl_name}' as tbl_name
, '{now_time}' as stat_time
, '{pt_format}' as pt_format
, date_format('{date_str}' ,'{pt_format}') as stat_pt
, '{val_type}' as val_type
, count(1) as val
, '{rule_code}' as rule_code
, '{rule_type}' as rule_type
, {expect_val} as expect_val
, {tbl_sort_code} as tbl_sort_code
, '{tbl_sort_name}' as tbl_sort_name
from puture_bigdata.{tbl_name}
where pt = date_format('{date_str}' ,'{pt_format}')
) a
left join
(
select tbl_name, val from (
select tbl_name, val
, row_number() over(partition by tbl_name order by stat_time desc ) as rn
from {res_tbl_name}
where pt = date_add('{date_str}', -1)
) where rn = 1
) b
on a.tbl_name = b.tbl_name
;
"""
return sql
# 表行数, 固定值
def sql_line_fixed_val():
sql = f"""
set odps.sql.hive.compatible=true ;
insert into table {res_tbl_name} partition (pt='{pt}')
select
concat( md5(concat('{tbl_name}', '_', date_format('{date_str}' ,'{pt_format}')) ), '_', {rule_code}, '_', hour('{now_time}') ) as id
, '{tbl_name}' as tbl_name
, '{now_time}' as stat_time
, '{pt_format}' as pt_format
, date_format('{date_str}' ,'{pt_format}') as stat_pt
, '{val_type}' as val_type
, count(1) as val
, '{rule_code}' as rule_code
, '{rule_type}' as rule_type
, {expect_val} as expect_val
, if (count(1) >= {expect_val}, 0, 1 ) as is_exc
, {tbl_sort_code} as tbl_sort_code
, '{tbl_sort_name}' as tbl_sort_name
from puture_bigdata.{tbl_name}
where pt = date_format('{date_str}' ,'{pt_format}') ;
"""
return sql
# 执行监控统计代码
def ex_monitor(sql: str):
try :
# print (sql)
o.execute_sql(sql, hints={'odps.sql.hive.compatible': true , "odps.sql.submit.mode":"script"})
print("{}: 运行成功".format(tbl_name) )
except exception as e:
print('{}: 运行异常 ======> '.format(tbl_name) + str(e))
if __name__ == '__main__':
try :
with o.execute_sql(sql_tbl_info, hints={'odps.sql.hive.compatible': true}).open_reader() as reader:
for row_record in reader:
# print(row_record) # 打印一条数据值
tbl_name = row_record.tbl_name
pt_format = row_record.pt_format
val_type = row_record.val_type
monitor_flag = row_record.monitor_flag
rule_code = row_record.rule_code
rule_type = row_record.rule_type
expect_val = row_record.expect_val
tbl_sort_code = row_record.tbl_sort_code
tbl_sort_name = row_record.tbl_sort_name
pt_num = row_record.pt_num
date_str = (date + timedelta(days=pt_num)).strftime('%y-%m-%d')
if rule_code == 1 :
ex_monitor(sql_upper_period_diff())
elif rule_code == 2 :
ex_monitor(sql_line_fixed_val())
else :
print("未知规则!!!")
except exception as e:
print('异常 ======> ' + str(e))
2. 告警信息推送程序
'''pyodps 3
请确保不要使用从 maxcompute下载数据来处理。下载数据操作常包括table/instance的open_reader以及 dataframe的to_pandas方法。
推荐使用 pyodps dataframe(从 maxcompute 表创建)和maxcompute sql来处理数据。
更详细的内容可以参考:https://help.aliyun.com/document_detail/90481.html
'''
import json
import requests
from datetime import datetime
import os
from odps import odps, dataframe
date_str = args['date']
# 接口地址和token信息
url = 'https://oapi.dingtalk.com/robot/send?access_token=***********************'
now_time = datetime.now().strftime('%y-%m-%d %h:%m:%s')
print (now_time)
sql_query = f"""
select tbl_name, stat_time, stat_pt, val_type, val, rule_type, expect_val, is_exc
from (
select tbl_name, stat_time, stat_pt, val_type, val, rule_type, expect_val, is_exc
, row_number() over(partition by tbl_name order by stat_time desc) as rn
from puture_bigdata_dev.tmp_monitor_tbl_info_log_di
where pt = '{date_str}'
and tbl_sort_code = 1 -- 表种类
) a
where rn = 1 and is_exc = 1
"""
# 钉钉机器人,发送消息
def dd_robot(url:str, content: str):
headers = {"content-type": "application/json;charset=utf-8"}
#content里面要设置关键字
data_info = {
"msgtype": "text",
"text": {
"content": content
},
"isatall": false
#这是配置需要@的人
# ,"at": {"atmobiles": ["15xxxxxx06",'18xxxxxx1']}
}
value = json.dumps(data_info)
response = requests.post(url,data=value,headers=headers)
if response.json()['errmsg']!='ok':
print(response.text)
# 主函数
if __name__ == '__main__': # py3可以省略
try :
with o.execute_sql(sql_query, hints={'odps.sql.hive.compatible': true}).open_reader() as reader:
result_rows = list(reader) # 读取所有的结果行
result_count = len(result_rows) # 获取结果条数
#print("结果条数:", result_count) # 打印结果条数
if result_count > 0 :
for row in result_rows:
tbl_name = row.tbl_name
stat_time = row.stat_time
stat_pt = row.stat_pt
val_type = row.val_type
val = row.val
rule_type = row.rule_type
expect_val = row.expect_val
#print (tbl_name)
content = "数据质量(dqc)校验告警 \n "
content = content + "【对象名称】:" + tbl_name + " \n "
content = content + "【实际分区】:pt=" + stat_pt + " \n "
content = content + "【触发规则】: " + rule_type + " | 当前样本值: " + val + " | 阈值: " + expect_val + " \n "
content = content + now_time + " \n "
dd_robot(url, content)
else :
print ("无异常情况;")
except exception as e:
print ('异常 ========>' + str(e) )
3. 告警样例
数据质量(dqc)校验告警
【对象名称】:dws_amazon_market_sales_stat_di
【实际分区】:pt=20240103
【触发规则】: 表行数,固定值 | 当前样本值: 617 | 阈值: 650
2024-01-04 02:54:44
到此这篇关于python实现数据库表的监控警告的项目实践的文章就介绍到这了,更多相关python 数据库表监控警告内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!
发表评论