当前位置: 代码网 > it编程>前端脚本>Python > Python pandas遍历行数据的2种方法小结

Python pandas遍历行数据的2种方法小结

2024年05月18日 Python 我要评论
背景pandas在数据处理过程中,除了对整列字段进行处理之外,有时还需求对每一行进行遍历,来处理每行的数据。本篇文章介绍 2 种方法,来遍历pandas 的行数据小编环境import sysprint

背景

pandas在数据处理过程中,除了对整列字段进行处理之外,有时还需求对每一行进行遍历,来处理每行的数据。本篇文章介绍 2 种方法,来遍历pandas 的行数据

小编环境

import sys
print('python 版本:',sys.version.split('|')[0])   
#python 版本: 3.11.5
import pandas as pd
print(pd.__version__)
#2.1.0

演示数据

演示数据

方法1

pandas.dataframe.itertuples:返回的是一个命名元组
官方文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.itertuples.html

1. 无任何参数

import pandas as pd
data=pd.read_excel("data.xlsx")

for row in data.itertuples():
    print("row:",row,"\n")
    #row: pandas(index=0, 序号=1, 分割字符='1&1&1', 固定宽度='111') 
    
    print("type(row):",type(row),"\n")
    #type(row): <class 'pandas.core.frame.pandas'> 
    
    print("row.序号:",row.序号)
    #row.序号: 1
    
    print("row.分割字符:",row.分割字符)
    #row.分割字符: 1&1&1
    
    print("row.固定宽度:",row.固定宽度)
    #row.固定宽度: 111
    
    break

2. 忽略掉索引

import pandas as pd
data=pd.read_excel("data.xlsx")

for row in data.itertuples(index=false):  #忽律索引
    print("row:",row,"\n")
    #row: pandas(序号=1, 分割字符='1&1&1', 固定宽度='111') 
    
    print("type(row):",type(row),"\n")
    #type(row): <class 'pandas.core.frame.pandas'> 
    
    print("row.序号:",row.序号)
    #row.序号: 1
    
    print("row.分割字符:",row.分割字符)
    #row.分割字符: 1&1&1
    
    print("row.固定宽度:",row.固定宽度)
    #row.固定宽度: 111
    
    break

3. 对命名元组起别名

import pandas as pd
data=pd.read_excel("data.xlsx")

for row in data.itertuples(index=false,name="data"):
    print("row:",row,"\n")
    #row: data(序号=1, 分割字符='1&1&1', 固定宽度='111')  
    
    print("type(row):",type(row),"\n")
    #type(row): <class 'pandas.core.frame.data'> 
    
    print("row.序号:",row.序号)
    #row.序号: 1
    
    print("row.分割字符:",row.分割字符)
    #row.分割字符: 1&1&1
    
    print("row.固定宽度:",row.固定宽度)
    #row.固定宽度: 111
    
    break

方法2

pandas.dataframe.iterrows:返回 (index, series) 元组
官方文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.iterrows.html

import pandas as pd
data=pd.read_excel("data.xlsx")

for index,row in data.iterrows():
    print("index:",index,"\n")
    #index: 0
    
    print("row:",row,"\n")
    #row: 序号          1
    #分割字符    1&1&1
    #固定宽度      111
    #name: 0, dtype: object
    
    print("type(row):",type(row),"\n")
    #type(row): <class 'pandas.core.series.series'> 
    
    print("row['序号']:",row['序号'])
    #row['序号']: 1
    
    print("row['分割字符']:",row['分割字符'])
    #row['分割字符']: 1&1&1
    
    print("row['固定宽度']:",row['固定宽度'])
    #row['固定宽度']: 111
    
    break

到此这篇关于python pandas遍历行数据的2种方法小姐的文章就介绍到这了,更多相关pandas遍历行内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网! 

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com