当前位置: 代码网 > it编程>数据库>大数据 > Doris 数据模型ROLLUP及前缀索引官方教程

Doris 数据模型ROLLUP及前缀索引官方教程

2024年05月18日 大数据 我要评论
基本概念在 doris 中,数据以表(table)的形式进行逻辑上的描述。一张表包括行(row)和列(column)。row 即用户的一行数据。column 用于描述一行数据中不同的字段。column

基本概念

在 doris 中,数据以表(table)的形式进行逻辑上的描述。
一张表包括行(row)和列(column)。row 即用户的一行数据。column 用于描述一行数据中不同的字段。

column 可以分为两大类:key 和 value。从业务角度看,key 和 value 可以分别对应维度列和指标列。

doris 的数据模型主要分为3类:

  • aggregate
  • uniq
  • duplicate

下面我们分别介绍。

aggregate 模型(聚合模型)

我们以实际的例子来说明什么是聚合模型,以及如何正确的使用聚合模型。

示例1:导入数据聚合

假设业务有如下数据表模式:

columnnametypeaggregationtypecomment
user_idlargeint用户id
datedate数据灌入日期
cityvarchar(20)用户所在城市
agesmallint用户年龄
sextinyint用户性别
last_visit_datedatetimereplace用户最后一次访问时间
costbigintsum用户总消费
max_dwell_timeintmax用户最大停留时间
min_dwell_timeintmin用户最小停留时间

如果转换成建表语句则如下(省略建表语句中的 partition 和 distribution 信息)

create table if not exists example_db.expamle_tbl
(
	`user_id` largeint not null comment "用户id",
	`date` date not null comment "数据灌入日期时间",
	`city` varchar(20) comment "用户所在城市",
	`age` smallint comment "用户年龄",
	`sex` tinyint comment "用户性别",
	`last_visit_date` datetime replace default "1970-01-01 00:00:00" comment "用户最后一次访问时间",
	`cost` bigint sum default "0" comment "用户总消费",
	`max_dwell_time` int max default "0" comment "用户最大停留时间",
	`min_dwell_time` int min default "99999" comment "用户最小停留时间",
)
aggregate key(`user_id`, `date`, `timestamp`, `city`, `age`, `sex`)
... /* 省略 partition 和 distribution 信息 */
;

可以看到,这是一个典型的用户信息和访问行为的事实表。
在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方便的解释 doris 的数据模型,将两部分信息统一存放在一张表中。

表中的列按照是否设置了 aggregationtype,分为 key (维度列) 和 value(指标列)。没有设置 aggregationtype 的,如 user_iddateage ... 等称为 key,而设置了 aggregationtype 的称为 value

当我们导入数据时,对于 key 列相同的行和聚合成一行,而 value 列会按照设置的 aggregationtype 进行聚合。 aggregationtype 目前有以下四种聚合方式:

  • sum:求和,多行的 value 进行累加。
  • replace:替代,下一批数据中的 value 会替换之前导入过的行中的 value。
  • max:保留最大值。
  • min:保留最小值。

假设我们有以下导入数据(原始数据):

user_iddatecityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-01北京2002017-10-01 06:00:00201010
100002017-10-01北京2002017-10-01 07:00:001522
100012017-10-01北京3012017-10-01 17:05:4522222
100022017-10-02上海2012017-10-02 12:59:1220055
100032017-10-02广州3202017-10-02 11:20:00301111
100042017-10-01深圳3502017-10-01 10:00:1510033
100042017-10-03深圳3502017-10-03 10:20:221166

我们假设这是一张记录用户访问某商品页面行为的表。我们以第一行数据为例,解释如下:

数据说明
10000用户id,每个用户唯一识别id
2017-10-01数据入库时间,精确到日期
北京用户所在城市
20用户年龄
0性别男(1 代表女性)
2017-10-01 06:00:00用户本次访问该页面的时间,精确到秒
20用户本次访问产生的消费
10用户本次访问,驻留该页面的时间
10用户本次访问,驻留该页面的时间(冗余)

那么当这批数据正确导入到 doris 中后,doris 中最终存储如下:

user_iddatecityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-01北京2002017-10-01 07:00:0035102
100012017-10-01北京3012017-10-01 17:05:4522222
100022017-10-02上海2012017-10-02 12:59:1220055
100032017-10-02广州3202017-10-02 11:20:00301111
100042017-10-01深圳3502017-10-01 10:00:1510033
100042017-10-03深圳3502017-10-03 10:20:221166

可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 聚合后的数据:

前5列没有变化,从第6列 last_visit_date 开始:

2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 replace,所以 2017-10-01 07:00:00 替换了 2017-10-01 06:00:00 保存了下来。

注:在同一个导入批次中的数据,对于 replace 这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。

  • 35:因为 cost 列的聚合类型为 sum,所以由 20 + 15 累加获得 35。

  • 10:因为 max_dwell_time 列的聚合类型为 max,所以 10 和 2 取最大值,获得 10。

  • 2:因为 min_dwell_time 列的聚合类型为 min,所以 10 和 2 取最小值,获得 2。

经过聚合,doris 中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细数据了。

示例2:保留明细数据

接示例1,我们将表结构修改如下:

columnnametypeaggregationtypecomment
user_idlargeint用户id
datedate数据灌入日期
timestampdatetime数据灌入时间,精确到秒
cityvarchar(20)用户所在城市
agesmallint用户年龄
sextinyint用户性别
last_visit_datedatetimereplace用户最后一次访问时间
costbigintsum用户总消费
max_dwell_timeintmax用户最大停留时间
min_dwell_timeintmin用户最小停留时间

即增加了一列 timestamp,记录精确到秒的数据灌入时间。

导入数据如下:

user_iddatetimestampcityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-012017-10-01 08:00:05北京2002017-10-01 06:00:00201010
100002017-10-012017-10-01 09:00:05北京2002017-10-01 07:00:001522
100012017-10-012017-10-01 18:12:10北京3012017-10-01 17:05:4522222
100022017-10-022017-10-02 13:10:00上海2012017-10-02 12:59:1220055
100032017-10-022017-10-02 13:15:00广州3202017-10-02 11:20:00301111
100042017-10-012017-10-01 12:12:48深圳3502017-10-01 10:00:1510033
100042017-10-032017-10-03 12:38:20深圳3502017-10-03 10:20:221166

那么当这批数据正确导入到 doris 中后,doris 中最终存储如下:

user_iddatetimestampcityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-012017-10-01 08:00:05北京2002017-10-01 06:00:00201010
100002017-10-012017-10-01 09:00:05北京2002017-10-01 07:00:001522
100012017-10-012017-10-01 18:12:10北京3012017-10-01 17:05:4522222
100022017-10-022017-10-02 13:10:00上海2012017-10-02 12:59:1220055
100032017-10-022017-10-02 13:15:00广州3202017-10-02 11:20:00301111
100042017-10-012017-10-01 12:12:48深圳3502017-10-01 10:00:1510033
100042017-10-032017-10-03 12:38:20深圳3502017-10-03 10:20:221166

我们可以看到,存储的数据,和导入数据完全一样,没有发生任何聚合。这是因为,这批数据中,因为加入了 timestamp 列,所有行的 key 都不完全相同。也就是说,只要保证导入的数据中,每一行的 key 都不完全相同,那么即使在聚合模型下,doris 也可以保存完整的明细数据。

示例3:导入数据与已有数据聚合

接示例1。假设现在表中已有数据如下:

user_iddatecityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-01北京2002017-10-01 07:00:0035102
100012017-10-01北京3012017-10-01 17:05:4522222
100022017-10-02上海2012017-10-02 12:59:1220055
100032017-10-02广州3202017-10-02 11:20:00301111
100042017-10-01深圳3502017-10-01 10:00:1510033
100042017-10-03深圳3502017-10-03 10:20:221166

我们再导入一批新的数据:

user_iddatecityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100042017-10-03深圳3502017-10-03 11:22:00441919
100052017-10-03长沙2912017-10-03 18:11:02311

那么当这批数据正确导入到 doris 中后,doris 中最终存储如下:

user_iddatecityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-01北京2002017-10-01 07:00:0035102
100012017-10-01北京3012017-10-01 17:05:4522222
100022017-10-02上海2012017-10-02 12:59:1220055
100032017-10-02广州3202017-10-02 11:20:00301111
100042017-10-01深圳3502017-10-01 10:00:1510033
100042017-10-03深圳3502017-10-03 11:22:0055196
100052017-10-03长沙2912017-10-03 18:11:02311

可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 用户的数据。

数据的聚合,在 doris 中有如下三个阶段发生:

  • 每一批次数据导入的 etl 阶段。该阶段会在每一批次导入的数据内部进行聚合。
  • 底层 be 进行数据 compaction 的阶段。该阶段,be 会对已导入的不同批次的数据进行进一步的聚合。
  • 数据查询阶段。在数据查询时,对于查询涉及到的数据,会进行对应的聚合。

数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已存在的数据进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程度对于用户查询而言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应假设某些聚合还未发生。(可参阅聚合模型的局限性一节获得更多详情。)

uniq 模型(唯一主键)

在某些多维分析场景下,用户更关注的是如何保证 key 的唯一性,即如何获得 primary key 唯一性约束。因此,我们引入了 uniq 的数据模型。该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。我们举例说明。

columnnametypeiskeycomment
user_idbigintyes用户id
usernamevarchar(50)yes用户昵称
cityvarchar(20)no用户所在城市
agesmallintno用户年龄
sextinyintno用户性别
phonelargeintno用户电话
addressvarchar(500)no用户住址
register_timedatetimeno用户注册时间

这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为 user_id + username)。那么我们的建表语句如下:

create table if not exists example_db.expamle_tbl
(
	`user_id` largeint not null comment "用户id",
	`username` varchar(50) not null comment "用户昵称",
	`city` varchar(20) comment "用户所在城市",
	`age` smallint comment "用户年龄",
	`sex` tinyint comment "用户性别",
	`phone` largeint comment "用户电话",
	`address` varchar(500) comment "用户地址",
	`register_time` datetime comment "用户注册时间"
)
unique key(`user_id`, `user_name`)
... /* 省略 partition 和 distribution 信息 */
;

而这个表结构,完全同等于以下使用聚合模型描述的表结构:

columnnametypeaggregationtypecomment
user_idbigint用户id
usernamevarchar(50)用户昵称
cityvarchar(20)replace用户所在城市
agesmallintreplace用户年龄
sextinyintreplace用户性别
phonelargeintreplace用户电话
addressvarchar(500)replace用户住址
register_timedatetimereplace用户注册时间

及建表语句:

create table if not exists example_db.expamle_tbl
(
	`user_id` largeint not null comment "用户id",
	`username` varchar(50) not null comment "用户昵称",
	`city` varchar(20) replace comment "用户所在城市",
	`age` smallint replace comment "用户年龄",
	`sex` tinyint replace comment "用户性别",
	`phone` largeint replace comment "用户电话",
	`address` varchar(500) replace comment "用户地址",
	`register_time` datetime replace comment "用户注册时间"
)
aggregate key(`user_id`, `user_name`)
... /* 省略 partition 和 distribution 信息 */
;

即 uniq 模型完全可以用聚合模型中的 replace 方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。

duplicate 模型(冗余模型)

在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 duplicate 数据模型来满足这类需求。举例说明。

columnnametypesortkeycomment
timestampdatetimeyes日志时间
typeintyes日志类型
error_codeintyes错误码
error_msgvarchar(1024)no错误详细信息
op_idbigintno负责人id
op_timedatetimeno处理时间

建表语句如下:

create table if not exists example_db.expamle_tbl
(
	`timestamp` datetime not null comment "日志时间",
	`type` int not null comment "日志类型",
	`error_code` int comment "错误码",
	`error_msg` varchar(1024) comment "错误详细信息",
	`op_id` bigint comment "负责人id",
	`op_time` datetime comment "处理时间"
)
duplicate key(`timestamp`, `type`)
... /* 省略 partition 和 distribution 信息 */
;

这种数据模型区别于 aggregate 和 uniq 模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的 duplicate key,只是用来指明底层数据按照那些列进行排序。(更贴切的名称应该为 “sorted column”,这里取名 “duplicate key” 只是用以明确表示所用的数据模型。关于 “sorted column”的更多解释,可以参阅前缀索引小节)。在 duplicate key 的选择上,我们建议适当的选择前 2-4 列就可以。

这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景,可参阅聚合模型的局限性小节。

rollup

rollup 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。

在 doris 中,我们将用户通过建表语句创建出来的表成为 base 表(base table)。base 表中保存着按用户建表语句指定的方式存储的基础数据。

在 base 表之上,我们可以创建任意多个 rollup 表。这些 rollup 的数据是基于 base 表产生的,并且在物理上是独立存储的。

rollup 表的基本作用,在于在 base 表的基础上,获得更粗粒度的聚合数据。

下面我们用示例详细说明在不同数据模型中的 rollup 表及其作用。

aggregate 和 uniq 模型中的 rollup

因为 uniq 只是 aggregate 模型的一个特例,所以这里我们不加以区别。

示例1:获得每个用户的总消费

aggregate 模型小节的示例2,base 表结构如下:

columnnametypeaggregationtypecomment
user_idlargeint用户id
datedate数据灌入日期
timestampdatetime数据灌入时间,精确到秒
cityvarchar(20)用户所在城市
agesmallint用户年龄
sextinyint用户性别
last_visit_datedatetimereplace用户最后一次访问时间
costbigintsum用户总消费
max_dwell_timeintmax用户最大停留时间
min_dwell_timeintmin用户最小停留时间

存储的数据如下:

user_iddatetimestampcityagesexlast_visit_datecostmax_dwell_timemin_dwell_time
100002017-10-012017-10-01 08:00:05北京2002017-10-01 06:00:00201010
100002017-10-012017-10-01 09:00:05北京2002017-10-01 07:00:001522
100012017-10-012017-10-01 18:12:10北京3012017-10-01 17:05:4522222
100022017-10-022017-10-02 13:10:00上海2012017-10-02 12:59:1220055
100032017-10-022017-10-02 13:15:00广州3202017-10-02 11:20:00301111
100042017-10-012017-10-01 12:12:48深圳3502017-10-01 10:00:1510033
100042017-10-032017-10-03 12:38:20深圳3502017-10-03 10:20:221166

在此基础上,我们创建一个 rollup:

columnname
user_id
cost

该 rollup 只包含两列:user_id 和 cost。则创建完成后,该 rollup 中存储的数据如下:

user_idcost
1000035
100012
10002200
1000330
10004111

可以看到,rollup 中仅保留了每个 user_id,在 cost 列上的 sum 的结果。那么当我们进行如下查询时:

select user_id, sum(cost) from table group by user_id;

doris 会自动命中这个 rollup 表,从而只需扫描极少的数据量,即可完成这次聚合查询。

示例2:获得不同城市,不同年龄段用户的总消费、最长和最短页面驻留时间

紧接示例1。我们在 base 表基础之上,再创建一个 rollup:

columnnametypeaggregationtypecomment
cityvarchar(20)用户所在城市
agesmallint用户年龄
costbigintsum用户总消费
max_dwell_timeintmax用户最大停留时间
min_dwell_timeintmin用户最小停留时间

则创建完成后,该 rollup 中存储的数据如下:

cityagecostmax_dwell_timemin_dwell_time
北京2003010
北京301222
上海2012005
广州3203011
深圳3501116

当我们进行如下这些查询时:

doris 会自动命中这个 rollup 表。

select city, age, sum(cost), max(max_dwell_time), min(min_dwell_time) from table group by city, age;
select city, sum(cost), max(max_dwell_time), min(min_dwell_time) from table group by city;
select city, age, sum(cost), min(min_dwell_time) from table group by city, age;

duplicate 模型中的 rollup

因为 duplicate 模型没有聚合的语意。所以该模型中的 rollup,已经失去了“上卷”这一层含义。而仅仅是作为调整列顺序,以命中前缀索引的作用。我们将在接下来的小节中,详细介绍前缀索引,以及如何使用rollup改变前缀索引,以获得更好的查询效率。

前缀索引与 rollup

前缀索引

不同于传统的数据库设计,doris 不支持在任意列上创建索引。doris 这类 mpp 架构的 olap 数据库,通常都是通过提高并发,来处理大量数据的。
本质上,doris 的数据存储在类似 sstable(sorted string table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。

在 aggregate、uniq 和 duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,aggregate key、uniq key 和 duplicate key 中指定的列进行排序存储的。

而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。

我们将一行数据的前 36 个字节 作为这行数据的前缀索引。当遇到 varchar 类型时,前缀索引会直接截断。我们举例说明:

以下表结构的前缀索引为 user_id(8byte) + age(8bytes) + message(prefix 20 bytes)。

columnnametype
user_idbigint
ageint
messagevarchar(100)
max_dwell_timedatetime
min_dwell_timedatetime

以下表结构的前缀索引为 user_name(20 bytes)。即使没有达到 36 个字节,因为遇到 varchar,所以直接截断,不再往后继续。

columnnametype
user_namevarchar(20)
ageint
messagevarchar(100)
max_dwell_timedatetime
min_dwell_timedatetime

当我们的查询条件,是前缀索引的前缀时,可以极大的加快查询速度。比如在第一个例子中,我们执行如下查询:

select * from table where user_id=1829239 and age=20;

该查询的效率会远高于如下查询:

select * from table where age=20;

所以在建表时,正确的选择列顺序,能够极大地提高查询效率

rollup 调整前缀索引

因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 rollup 来人为的调整列顺序。举例说明。

base 表结构如下:

columnnametype
user_idbigint
ageint
messagevarchar(100)
max_dwell_timedatetime
min_dwell_timedatetime

我们可以在此基础上创建一个 rollup 表:

columnnametype
ageint
user_idbigint
messagevarchar(100)
max_dwell_timedatetime
min_dwell_timedatetime

可以看到,rollup 和 base 表的列完全一样,只是将 user_id 和 age 的顺序调换了。那么当我们进行如下查询时:

select * from table where age=20 and massage like "%error%";

会优先选择 rollup 表,因为 rollup 的前缀索引匹配度更高。

rollup 的几点说明

  • rollup 最根本的作用是提高某些查询的查询效率(无论是通过聚合来减少数据量,还是修改列顺序以匹配前缀索引)。因此 rollup 的含义已经超出了 “上卷” 的范围。这也是为什么我们在源代码中,将其命名为 materized index(物化索引)的原因。
  • rollup 是附属于 base 表的,可以看做是 base 表的一种辅助数据结构。用户可以在 base 表的基础上,创建或删除 rollup,但是不能在查询中显式的指定查询某 rollup。是否命中 rollup 完全由 doris 系统自动决定。
  • rollup 的数据是独立物理存储的。因此,创建的 rollup 越多,占用的磁盘空间也就越大。同时对导入速度也会有影响(导入的etl阶段会自动产生所有 rollup 的数据),但是不会降低查询效率(只会更好)。
  • rollup 的数据更新与 base 表示完全同步的。用户无需关心这个问题。
  • rollup 中列的聚合方式,与 base 表完全相同。在创建 rollup 无需指定,也不能修改。
  • 查询能否命中 rollup 的一个必要条件(非充分条件)是,查询所涉及的所有列(包括 select list 和 where 中的查询条件列等)都存在于该 rollup 的列中。否则,查询只能命中 base 表。
  • 某些类型的查询(如 count(*))在任何条件下,都无法命中 rollup。具体参见接下来的 聚合模型的局限性 一节。
  • 可以通过 explain your_sql; 命令获得查询执行计划,在执行计划中,查看是否命中 rollup。
  • 可以通过 desc tbl_name all; 语句显示 base 表和所有已创建完成的 rollup。

以下文档有一些对这里rollup说明的补充rollup

聚合模型的局限性

这里我们针对 aggregate 模型(包括 uniq 模型),来介绍下聚合模型的局限性。

在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。

假设表结构如下:

columnnametypeaggregationtypecomment
user_idlargeint用户id
datedate数据灌入日期
costbigintsum用户总消费

假设存储引擎中有如下两个已经导入完成的批次的数据:

batch 1

user_iddatecost
100012017-11-2050
100022017-11-2139

batch 2

user_iddatecost
100012017-11-201
100012017-11-215
100032017-11-2222

可以看到,用户 10001 分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:

user_iddatecost
100012017-11-2051
100012017-11-215
100022017-11-2139
100032017-11-2222

我们在查询引擎中加入了聚合算子,来保证数据对外的一致性。

另外,在聚合列(value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在如上示例中执行如下查询:

select min(cost) from table;

得到的结果是 5,而不是 1。

同时,这种一致性保证,在某些查询中,会极大的降低查询效率。

我们以最基本的 count(*) 查询为例:

select count(*) from table;

在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进行计数,保存count的统计信息”,或者在查询时“仅扫描某一列数据,获得count值”的方式,只需很小的开销,即可获得查询结果。但是在 doris 的聚合模型中,这种查询的开销非常大

我们以刚才的数据为例:

batch 1

user_iddatecost
100012017-11-2050
100022017-11-2139

batch 2

user_iddatecost
100012017-11-201
100012017-11-215
100032017-11-2222

因为最终的聚合结果为:

user_iddatecost
100012017-11-2051
100012017-11-215
100022017-11-2139
100032017-11-2222

所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id 这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, 10003)。而如果不加查询时聚合,则得到的结果是 5(两批次一共5行数据)。可见这两个结果都是不对的。

为了得到正确的结果,我们必须同时读取 user_id 和 date 这两列的数据,再加上查询时聚合,才能返回 4 这个正确的结果。也就是说,在 count(*) 查询中,doris 必须扫描所有的 aggregate key 列(这里就是 user_id 和 date),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count(*) 查询需要扫描大量的数据。

因此,当业务上有频繁的 count(*) 查询时,我们建议用户通过增加一个值衡为 1 的,聚合类型为 sum 的列来模拟 count(*)。如刚才的例子中的表结构,我们修改如下:

columnnametypeaggreatetypecomment
user_idbigint用户id
datedate数据灌入日期
costbigintsum用户总消费
countbigintsum用于计算count

增加一个 count 列,并且导入数据中,该列值衡为 1。则 select count(*) from table; 的结果等价于 select sum(count) from table;。而后者的查询效率将远高于前者。不过这种方式也有使用限制,就是用户需要自行保证,不会重复导入 aggregate key 列都相同的行。否则,select sum(count) from table; 只能表述原始导入的行数,而不是 select count(*) from table; 的语义。

另一种方式,就是 将如上的 count 列的聚合类型改为 replace,且依然值衡为 1。那么 select sum(count) from table; 和 select count(*) from table; 的结果将是一致的。并且这种方式,没有导入重复行的限制。

duplicate 模型

duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) 查询时,任意选择一列查询,即可得到语意正确的结果。

数据模型的选择建议

因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要

  • aggregate 模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。
  • uniq 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 rollup 等预聚合带来的查询优势(因为本质是 replace,没有 sum 这种聚合方式)。
  • duplicate 适合任意维度的 ad-hoc 查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 key 列)。

以上就是doris 数据模型rollup及前缀索引官方教程的详细内容,更多关于doris 数据模型的资料请关注代码网其它相关文章!

(0)

相关文章:

  • 把Navicat中数据库所有表导出的方法

    如何把navicat中的数据库中的所有表导出导入一个数据库的所有表第一步 打开navicat 找到你想要导出表的数据库第二步 右击该数据库,选择转储sql文件再选择结构和数据&he…

    2024年05月18日 数据库
  • 如何查看Navicat加密的数据库密码

    查看navicat加密的数据库密码背景:本机装的mysql数据库密码忘记了,打开了navicat连接过数据库,不过密码是加密的,既然能加密那就能解密,哈哈哈哈。解密后发现密码居然是…

    2024年05月18日 数据库
  • DBeaver执行外部sql文件详细图文教程

    t1:dbeaver执行外部sql文件如果数据库已经存在了,那么直接右击库名,如下图:如果数据库不存在,外部sql文件中含有建库语句,可以先手动建库,再把sql文件中建库语句删了后…

    2024年05月18日 数据库
  • Hive数据导出详解

    Hive数据导出详解

    一、数据导出是什么?hive是一个依赖hadoop集群的数据处理平台,我们不仅需要对数据进行筛选处理,更需要进行导出,供我们多次重复使用。二、六大帮派1.ins... [阅读全文]
  • 安装navicat最新详细流程

    1.双击已下载好的navicat安装包,点击"下一步"2.点击我同意,在点击"下一步"3.设置navicat安装路劲, 至少要保证磁盘有90…

    2024年05月18日 数据库
  • Spark SQL小文件问题处理

    Spark SQL小文件问题处理

    1.1、小文件危害大量的小文件会影响hadoop集群管理或者spark在处理数据时的稳定性:1.spark sql写hive或者直接写入hdfs,过多的小文件会... [阅读全文]

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com