当前位置: 代码网 > it编程>数据库>Redis > 详解Redis如何处理Hash冲突

详解Redis如何处理Hash冲突

2024年09月29日 Redis 我要评论
引言在 redis 中,哈希表是一种常见的数据结构,通常用于存储对象的属性,对于哈希表,最常遇到的是哈希冲突,那么,当 redis遇到hash冲突会如何处理?这篇文章,我们将详细介绍redis如何处理

引言

在 redis 中,哈希表是一种常见的数据结构,通常用于存储对象的属性,对于哈希表,最常遇到的是哈希冲突,那么,当 redis遇到hash冲突会如何处理?这篇文章,我们将详细介绍redis如何处理哈希冲突,并探讨其性能和实现细节。

redis中的哈希表实现

在redis中,哈希表被用于实现多个内部数据结构,包括数据库的键空间(key space)和哈希类型(hash type)。redis的哈希表实现基于一个称为 dict 的数据结构。dict 结构内部使用了两个哈希表,以支持渐进式rehashing。

哈希表结构

redis的哈希表结构定义如下:

typedef struct dictht {
    dictentry **table;  // 哈希表数组
    unsigned long size; // 哈希表大小
    unsigned long sizemask; // 哈希表大小掩码,用于计算索引
    unsigned long used; // 已使用的哈希表节点数量
} dictht;

dictentry 是哈希表的节点,定义如下:

typedef struct dictentry {
    void *key; // 键
    union {
        void *val; // 值
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictentry *next; // 指向下一个哈希表节点,形成链表
} dictentry;

每个哈希表节点包含一个键和值,以及一个指向下一个节点的指针。这个指针用于解决哈希冲突。

哈希冲突解决策略

在redis中,哈希冲突通过链地址法(chaining)来解决。具体来说,当多个键映射到同一个哈希桶时,这些键会被存储在一个链表中。链地址法的优点是实现简单,且在哈希表负载因子较低时性能较好。

链地址法实现

当插入一个键值对时,redis首先计算键的哈希值,并根据哈希值找到对应的哈希桶。如果该桶为空,则直接插入;如果该桶不为空,则在链表的头部插入新节点。因此,redis的哈希表是一个带有头插法的链表。

以下是插入操作的伪代码:

function dictadd(dict, key, value):
    index = hashfunction(key) & dict.sizemask
    if dict.table[index] == null:
        dict.table[index] = new dictentry(key, value)
    else:
        newentry = new dictentry(key, value)
        newentry.next = dict.table[index]
        dict.table[index] = newentry

查找操作

查找操作时,redis首先计算键的哈希值,并找到对应的哈希桶。然后在桶内的链表中进行遍历查找,直到找到对应的键或链表结束。

以下是查找操作的伪代码:

function dictfind(dict, key):
    index = hashfunction(key) & dict.sizemask
    entry = dict.table[index]
    while entry != null:
        if entry.key == key:
            return entry.value
        entry = entry.next
    return null

渐进式rehashing

为了保持哈希表的性能,redis需要在哈希表过于拥挤时进行扩容,或在哈希表过于空闲时进行缩容。redis采用渐进式rehashing策略,以避免在rehash过程中阻塞服务。

rehashing过程

rehashing的过程如下:

  • 创建一个新的哈希表,大小为当前哈希表的两倍或一半。
  • 将旧哈希表中的数据逐渐迁移到新哈希表中。
  • 迁移完成后,释放旧哈希表的内存。

渐进式rehashing通过分批次将旧哈希表的数据迁移到新哈希表来实现。具体来说,每次增删改查操作都会顺便迁移一定数量的哈希表节点,直到迁移完成。

以下是渐进式rehashing的伪代码:

function rehashstep(dict):
    if dict.rehashidx == -1:
        return
    for i = 0 to rehash_batch_size:
        if dict.rehashidx >= dict.size:
            dict.rehashidx = -1
            break
        while dict.table[dict.rehashidx] == null:
            dict.rehashidx += 1
        entry = dict.table[dict.rehashidx]
        while entry != null:
            nextentry = entry.next
            index = hashfunction(entry.key) & dict.new_ht.sizemask
            entry.next = dict.new_ht.table[index]
            dict.new_ht.table[index] = entry
            entry = nextentry
        dict.table[dict.rehashidx] = null
        dict.rehashidx += 1

性能分析

redis的哈希表在负载因子较低时性能优越,但在负载因子较高时,链表的长度会增加,从而导致查找性能下降。为了解决这个问题,redis通过渐进式rehashing保持哈希表的负载因子在合理范围内。

总结

redis通过链地址法解决哈希冲突,并通过渐进式 rehashing 保持哈希表的性能。链地址法实现简单且在负载因子较低时性能较好,但在负载因子较高时性能会下降。渐进式rehashing通过分批次迁移数据,避免了 rehash过程中的服务阻塞,从而保持了系统的高性能和高可用性。

通过以上机制,redis在处理哈希冲突时能够有效地平衡性能和复杂度,确保在各种使用场景下都能提供高效的数据存储和检索服务。

以上就是详解redis如何处理hash冲突的详细内容,更多关于redis处理hash冲突的资料请关注代码网其它相关文章!

(0)

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

验证码:
Copyright © 2017-2025  代码网 保留所有权利. 粤ICP备2024248653号
站长QQ:2386932994 | 联系邮箱:2386932994@qq.com