hadoop是一个分布式系统基础架构,主要用于大数据的存储和处理。它允许使用简单的编程模型跨集群处理和生成大数据集。hadoop主要由hdfs(hadoop distributed filesystem,分布式文件系统)和mapreduce编程模型两部分组成。
准备工作
首先查看数据集(一小部分数据和示例)
配置pom文件和建包
<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/pom/4.0.0"
xmlns:xsi="http://www.w3.org/2001/xmlschema-instance"
xsi:schemalocation="http://maven.apache.org/pom/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelversion>4.0.0</modelversion>
<groupid>org.example</groupid>
<artifactid>stock_daily</artifactid>
<version>1.0-snapshot</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<project.build.sourceencoding>utf-8</project.build.sourceencoding>
</properties>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-hdfs</artifactid>
<version>3.1.2</version>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-client</artifactid>
<version>3.1.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-common</artifactid>
<version>3.1.2</version>
</dependency>
<dependency>
<groupid>org.apache.commons</groupid>
<artifactid>commons-configuration2</artifactid>
<version>2.7</version>
</dependency>
<dependency>
<groupid>org.slf4j</groupid>
<artifactid>slf4j-api</artifactid>
<version>1.7.30</version>
</dependency>
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-common</artifactid>
<version>3.1.2</version>
</dependency>
</dependencies>
</project>
代码
创建一个类继承configured实现tool接口,configured类可以帮助hadoop命令行工具管理配置文件,如yarn-site.xml和mapred-site.xml。tool接口中的toolrunner是程序的入口点,可以启动run方法并把命令行的参数传给run。
重写run方法,创建job和配置map和reduce类。这个configurition就是用来管理hadoop的配置文件的类。args是命令行输入的参数,虚拟机会把它读进来。
mapper类以及map方法
mapper类会将文件按行切分,然后把每一行的字节偏移量作为建,每一行的数据作为值交给map方法。map方法把里面的内容取出来求下行指数,下行指数=((收盘价-开盘价) / (收盘价 - 最低价+1)。然后将股票代码作为键,每一行的下行指数作为值写入context中,作为后面reduce的输出。context.write用于写入输出数据。
reduce类和reduce方法
shuffile会把map输出文件下载过来,然后会自动根据键,聚合到一个容器里面,遍历求和并计算平均的下行指数即可。
完整代码
package com.zlh;
import org.apache.hadoop.conf.configuration;
import org.apache.hadoop.conf.configured;
import org.apache.hadoop.fs.path;
import org.apache.hadoop.io.doublewritable;
import org.apache.hadoop.io.longwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.job;
import org.apache.hadoop.mapreduce.mapper;
import org.apache.hadoop.mapreduce.reducer;
import org.apache.hadoop.mapreduce.lib.input.textinputformat;
import org.apache.hadoop.mapreduce.lib.output.textoutputformat;
import org.apache.hadoop.util.tool;
import org.apache.hadoop.util.toolrunner;
import java.io.ioexception;
/**
* calculate and output the code and danger values of stock.
* */
public class stock_daily extends configured implements tool {
/**
* the entrance of the program.
* @param args is used as the parameter of run method.
* */
public static void main(string[] args) throws exception {
//run the stock_daily as a mapreduce job.
int res = toolrunner.run(new stock_daily(),args);
//close the jvm
system.exit(res);
}//of main
/**
* construct job and execute the job.
* @param args the given string args.
* */
@override
public int run(string[] args) throws exception {
//set configure parameter information of hadoop
configuration conf = new configuration();
//construct job class
system.out.println("创建和配置job");
job job = job.getinstance(conf,"stock_daily");
//indicate the class of the job
job.setjarbyclass(stock_daily.class);
//indicate the class of the map and reduce
job.setmapperclass(map.class);
job.setreducerclass(reduce.class);
job.setcombinerclass(reduce.class);
//indicate the format of the input:text type file
job.setinputformatclass(textinputformat.class);
textinputformat.addinputpath(job, new path(args[0]));
//indicate the format of the output:key is text,value is double.
job.setoutputformatclass(textoutputformat.class);
job.setoutputkeyclass(text.class);
job.setoutputvalueclass(doublewritable.class);
textoutputformat.setoutputpath(job,new path(args[1]));
//execute the mapreduce
boolean res = job.waitforcompletion(true);
if(res){
return 0;
}//of if
else{
return -1;
}//of else
}//of run
/**
* the map class is used to dispose the data to many lines as the input of the method.
* */
public static class map extends mapper<longwritable, text, text, doublewritable>{
//define the map output key and value.
private final static doublewritable downindex = new doublewritable();
private text stock = new text();
/**
* use each line's stock_code as key,downindex as the value
* @param key the byte offset of every line.
* @param value text values.
* @param context the program context.
* */
@override
public void map(longwritable key, text value, context context)
throws ioexception, interruptedexception{
//split line to calculate the falling index
string[] fields = value.tostring().split("\t");
stock.set(fields[0]);
double openprice=double.parsedouble(fields[2]);
double closeprice=double.parsedouble(fields[3]);
double lowprice=double.parsedouble(fields[5]);
downindex.set((closeprice-openprice)-(closeprice-lowprice+1));
context.write(stock,downindex);
}//of map
}//of class map
/**
* the reduce is used to calculate the output result.
* */
public static class reduce extends reducer<text, doublewritable, text, doublewritable>{
/**
* output the avg downindex of every stock code.
* @param key the output key of mapper
* @param values output values of mapper
* @param context the context of mapreduce.
* */
public void reduce (text key, iterable<doublewritable> values, context context) throws ioexception, interruptedexception {
double sum=0;
int nums = 0;
//traverse the iterable values and sum of them
for (doublewritable value : values) {
sum += value.get();
nums++;
}//of while
context.write(key,new doublewritable(sum/nums));
}//of reduce
}//of class reduce
}//of class stock_daily
上传集群并执行
将项目文件打包为jar包上传至hadoop集群中(打包方式参照hadoop应用1)
在windows的命令提示符里面使用pscp命令上传jar包(前提是已经安装了putty)
文件夹也可以通过这个方式传,要在pscp后面加个-r。
启动集群后使用hadoop jar 输入文件位置(要在hdfs里面,不是在linux里面) 输出文件目录,会报找不到类的错,要修改两个配置文件。
1、mapred-site.xml
增加两个配置:
<property>
<name>mapreduce.admin.user.env</name>
<value>hadoop_mapred_home=$hadoop_common_home</value>
</property>
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>hadoop_mapred_home=$hadoop_common_home</value>
</property>
2、yarn-site.xml
增加container本地日志查看配置
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>hadoop安装目录/logs/userlogs</value>
</property>
<property>
<name>yarn.nodemanager.log.retain-seconds</name>
<value>108000</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value> <!--此项小于1536,mapreduce程序会报错-->
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value> <!--防止一级调度器请求资源量过大-->
</property>
设置虚拟内存与内存的倍率,防止vm不足container被kill
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>3</value>
</property>
以上配置确认无误后,如果仍有报内存错误、am错误、卡job、卡0%等问题找不到原因,可以尝试按以下方式解决:
(相应属性的设置为ha模式设置)
(1)mapred-site.xml
将mapreduce.framework.name改为:
------------------------------------
vix.mapreduce.framework.name
yarn
------------------------------------
(2)yarn-site.xml
将yarn.resourcemanager.address改为:
------------------------------------
vix.yarn.resourcemanager.address
主节点地址:18040
------------------------------------
将yarn.resourcemanager.scheduler.address改为:
------------------------------------
vix.yarn.resourcemanager.scheduler.address
主节点地址:18030
------------------------------------
文件位置以及路径如下图所示
修改之后把文件传到另外两个节点,然后重新启动集群
然后执行jar包(要先把数据上传到hadoop集群中,使用hdfs dfs -put命令)
试验运行过程及结果
ps:hadoop执行jar包出现问题可以在日志文件里面找报错。在logs里面的resourcemanager里面。
发表评论